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Face Recognition by Humans:
Nineteen Results All Computer
Vision Researchers Should
Know About
Increased knowledge about the ways people recognize each other may help to

guide efforts to develop practical automatic face-recognition systems.

By Pawan Sinha, Benjamin Balas, Yuri Ostrovsky, and Richard Russell

ABSTRACT | A key goal of computer vision researchers is to

create automated face recognition systems that can equal, and

eventually surpass, human performance. To this end, it is

imperative that computational researchers know of the key

findings from experimental studies of face recognition by

humans. These findings provide insights into the nature of

cues that the human visual system relies upon for achieving its

impressive performance and serve as the building blocks for

efforts to artificially emulate these abilities. In this paper, we

present what we believe are 19 basic results, with implications

for the design of computational systems. Each result is

described briefly and appropriate pointers are provided to

permit an in-depth study of any particular result.
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I . INTRODUCTION

Notwithstanding the extensive research effort that has

gone into computational face recognition algorithms, we

have yet to see a system that can be deployed effectively in
an unconstrained setting, with all of the attendant

variability in imaging parameters such as sensor noise,

viewing distance, and illumination. The only system that

does seem to work well in the face of these challenges is

the human visual system. It makes eminent sense,

therefore, to attempt to understand the strategies this bio-

logical system employs, as a first step towards eventually

translating them into machine-based algorithms. With this

objective in mind, we review here 19 important results

regarding face recognition by humans. While these
observations do not constitute a coherent theory of face

recognition in human vision (we simply do not have all the

pieces yet to construct such a theory), they do provide

useful hints and constraints for one. We believe that for

this reason, they are likely to be useful to computer vision

researchers in guiding their ongoing efforts. Of course, the

success of machine vision systems is not dependent on a

slavish imitation of their biological counterparts. Insights
into the functioning of the latter serve primarily as

potentially fruitful starting points for computational

investigations.

We have endeavored to bring together in one place

several diverse results to be able to provide the reader a

fairly comprehensive picture of our current understanding

regarding how humans recognize faces. Each of the results

is briefly described and, whenever possible, accompanied
by its implications for computer vision. While the

descriptions here are not extensive for reasons of space,

we have provided relevant pointers to the literature for a

more in-depth study. The results are organized along the

following broad themes.

Recognition as a function of available spatial resolution

Result 1: Humans can recognize familiar faces in
very low-resolution images.

Result 2: The ability to tolerate degradations in-

creases with familiarity.
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Result 3: High-frequency information by itself is
insufficient for good face recognition

performance.

The nature of processing: Piecemeal versus holistic

Result 4: Facial features are processed holistically.

Result 5: Of the different facial features, eyebrows
are among the most important for

recognition.

Result 6: The important configural relationships

appear to be independent across the width

and height dimensions.

The nature of cues used: Pigmentation, shape and motion
Result 7: Face-shape appears to be encoded in a

slightly caricatured manner.

Result 8: Prolonged face viewing can lead to high-

level aftereffects, which suggest proto-

type-based encoding.

Result 9: Pigmentation cues are at least as impor-

tant as shape cues.

Result 10: Color cues play a significant role, espe-
cially when shape cues are degraded.

Result 11: Contrast polarity inversion dramatically

impairs recognition performance, possi-

bly due to compromised ability to use

pigmentation cues.

Result 12: Illumination changes influence general-

ization.

Result 13: View-generalization appears to be medi-
ated by temporal association.

Result 14: Motion of faces appears to facilitate

subsequent recognition.

Developmental progression

Result 15: The visual system starts with a rudimen-
tary preference for face-like patterns.

Result 16: The visual system progresses from a piece-

meal to a holistic strategy over the first

several years of life.

Neural underpinnings

Result 17: The human visual system appears to de-
vote specialized neural resources for face

perception.

Result 18: Latency of responses to faces in infero-

temporal (IT) cortex is about 120 ms, sug-

gesting a largely feedforward computation.

Result 19: Facial identity and expression might be

processed by separate systems.

A. Recognition as a Function of Available
Spatial Resolution

1) Result 1: Humans Can Recognize Familiar Faces in Very
Low-Resolution Images: Progressive improvements in cam-

era resolutions provide ever-greater temptation to use
increasing amounts of detail in face representations in

machine vision systems. Higher image resolutions allow

recognition systems to discriminate between individuals

on the basis of fine differences in their facial features. The

advent of iris-based biometric systems is a case in point.

However, the problem that such details-based schemes

often have to contend with is that high-resolution images

are not always available. This is particularly true in
situations where individuals have to be recognized at a

distance. In order to design systems more robust against

image degradations, we can turn to the human visual

system for inspiration. Everyday, we are confronted with

the task of face identification at a distance and must extract

the critical information from the resulting low-resolution

images. Precisely how does face identification perfor-

mance change as a function of image resolution?
Pioneering work on face recognition with low-resolution

imagery was done by Harmon and Julesz [30], [31].

Working with block averaged images of familiar faces, they

found high recognition accuracies even with images

containing just 16 � 16 blocks. Yip and Sinha [89] found

that subjects could recognize more than half of an un-

primed set of familiar faces that had been blurred to have

equivalent image resolutions of merely 7 � 10 pixels (see
Fig. 1), and recognition performance reached ceiling level

at a resolution of 19 � 27 pixels. While the remarkable

tolerance of the human visual system to resolution

reduction is now indisputable, we do not have a clear

idea of exactly how this is accomplished. At the very least,

this result demonstrates that fine featural details are not

necessary to obtain good face recognition performance.

Furthermore, given the indistinctness of the individual
features at low resolutions, it appears likely that diagnos-

ticity resides in their overall configuration. However, pre-

cisely which aspects of this configuration are important,

and how we can computationally encode them, are open

questions.

2) Result 2: The Ability to Tolerate Degradations Increases
With Familiarity: In trying to uncover the mechanisms
underlying the human ability to recognize highly degraded

face images, we might wonder whether this is the result of

some general purpose compensatory processes, i.e., a

biological instantiation of model-free Bsuper resolution.[
However, the story appears to be more complicated. The

ability to handle degradations increases dramatically with

amount of familiarity. Bruce et al. [9] demonstrated ob-

servers’ poor performance on the task of matching two
different photographs of an unfamiliar person. Burton et al.
[10] have shown that observers’ recognition performance

with low-quality surveillance video is much better when the

individuals pictured are familiar colleagues, rather than

those with whom the observers have interacted infrequent-

ly. Additionally, body structure and gait information are

much less useful for identification than facial information,
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even though the effective resolution in that region is very

limited. Recognition performance changes only slightly
after obscuring the gait or body, but is affected dramatically

when the face is hidden, as illustrated in Fig. 2. This does

not appear to be a skill that can be acquired through general

experience; even police officers with extensive forensic

experience perform poorly unless they are familiar with the

target individuals. The fundamental question this finding,

and others like it [49], [66], bring up is the following: How

does the facial representation and matching strategy used
by the visual system change with increasing familiarity, so

as to yield greater tolerance to degradations? We do not yet

know exactly what aspect of the increased experience with

a given individual leads to an increase in the robustness of

the encoding; is it the greater number of views seen or is

the robustness an epiphenomenon related to some bio-

logical limitations such as slow memory consolidation

rates? Notwithstanding our limited understanding, some
implications for computer vision are already evident. In

considering which aspects of human performance to take

as benchmarks, we ought to draw a distinction between
familiar and unfamiliar face recognition. The latter may

end up being a much more modest goal than the former

and might constitute a false goal towards which to strive.

The appropriate benchmark for evaluating machine-based

face recognition systems is human performance with

familiar faces.

3) Result 3: High-Frequency Information by Itself Does Not
Lead to Good Face Recognition Performance: We have long

been enamored of edge maps as a powerful initial repre-

sentation for visual inputs. The belief is that edges capture

the most important aspects of images (the discontinuities)

while being largely invariant to shallow shading gradients

that are often the result of illumination variations. In the

context of human vision as well, line drawings appear to be

sufficient for recognition purposes. Caricatures and quick
pen portraits are often highly recognizable. Do these

observations mean that high spatial frequencies are

critical, or at least sufficient, for face recognition? Several

researchers have examined the contribution of different

spatial frequency bands to face recognition [14], [21].

Their findings suggest that high spatial frequencies might

not be too important for face perception. In the particular

domain of line drawings, Graham Davies and his col-
leagues have reported [16] that images which contain

exclusively contour information are very difficult to re-

cognize (specifically, they found that subjects could recog-

nize only 47% of the line drawings compared to 90% of the

original photographs; see Fig. 3). How can we reconcile

such findings with the observed recognizability of line

drawings in everyday experience? Bruce and colleagues

[6], [7] have convincingly argued that such depictions do,
in fact, contain significant photometric cues and that the

contours included in such a depiction by an accomplished

artist correspond not just to a low-level edge map, but in

Fig. 2. Frames from video-sequences used in Burton et al. [10] study.

(a) Original input. (b) Body obscured. (c) Face obscured. Based on

results from such manipulations, researchers concluded that

recognition of familiar individuals in low-resolution video is based

largely on facial information.

Fig. 1. Unlike current machine-based systems, human observers are able to handle significant degradations in face images. For instance,

subjects are able to recognize more than half of all familiar faces shown to them at the resolution depicted here. Individuals shown in

order are: Michael Jordan, Woody Allen, Goldie Hawn, Bill Clinton, Tom Hanks, Saddam Hussein, Elvis Presley, Jay Leno,

Dustin Hoffman, Prince Charles, Cher, and Richard Nixon.
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fact embody a faces photometric structure. It is the skillful

inclusion of these photometric cues that is believed to

make human generated line drawings more recognizable

than computer generated ones [59]. The idea that Bline

drawings[ contain important photometric cues leads to the

prediction that recognition performance with line draw-

ings would be susceptible to contrast negation, just as for
gray-scale images. This prediction is indeed supported by

experimental data [60].

B. Nature of Processing: Piecemeal Versus Holistic

1) Result 4: Facial Features Are Processed Holistically:
Can facial features (eyes, nose, mouth, eyebrows, etc.) be

processed independently from the rest of the face? Faces

can often be identified from very little information.

Sadr et al. [70] and others [15], [23] have shown that just

one feature (such as the eyes or, notably, the eyebrows)
can be enough for recognition of many famous faces.

However, when features on the top half of one face are

combined with the bottom half of another face, the two

distinct identities are very difficult to recognize [91]

(see Fig. 4). The holistic context seems to affect how

individual features are processed. When the two halves of

the face are misaligned, presumably disrupting normal

holistic processing, the two identities are easily recognized.
These results suggest that when taken alone, features are

sometimes sufficient for facial recognition. In the context

of a face, however, the geometric relationship between

each feature and the rest of the face can override the

diagnosticity of that feature. Although feature processing is

important for facial recognition, this pattern of results

suggests that configural processing is at least as important,

and that facial recognition is dependent on Bholistic[
processes involving an interdependency between featural

and configural information. Recent work has explored how

one might learn to use holistic information [67] and the
contribution of holistic processing to the analysis of facial

expressions [11].

2) Result 5: Of the Different Facial Features, Eyebrows Are
Among the Most Important for Recognition: Not all facial

features are created equal in terms of their role in helping

identify a face [15], [19], [23], [90]. Experimental results

typically indicate the importance of eyes followed by the
mouth and then the nose. However, one facial feature has,

surprisingly, received little attention from researchers in

this domainVthe eyebrows. Sadr et al. [70] have presented

evidence suggesting that the eyebrows might not only be

important features, but that they might well be among

the most important, comparable to the eyes. These re-

searchers digitally erased the eyebrows from a set of 50

celebrity face images (Fig. 5). Subjects were shown these
images individually and asked to name them. Subse-

quently, they were asked to recognize the original set of

(unaltered) images. Performance was recorded as the

proportion of faces a subject was able to recognize. Per-

formance with the images lacking eyebrows was signifi-

cantly worse relative to that with the originals, and even

with the images lacking eyes. These results suggest that the

eyebrows may contribute in an important way to the
representations underlying identity assessments.

How might one reasonably explain the perceptual

significance of eyebrows in face recognition? There are

several possibilities. First, eyebrows appear to be very im-

portant for conveying emotions and other nonverbal

signals. Since the visual system may already be biased to

attend to the eyebrows in order to detect and interpret

such signals, it may be that this bias also extends to the task
of facial identification. Second, for a number of reasons,

eyebrows may serve as a very Bstable[ facial feature. Be-

cause they tend to be relatively high-contrast and large

facial features, eyebrows can survive substantial image de-

gradations. For instance, when faces are viewed at a

Fig. 4. Try to name the famous faces depicted in the two halves of the

left image. Now try the right image. Subjects find it much more difficult

to perform this task when the halves are aligned (left) compared to

misaligned halves (right), presumably because holistic processing

interacts (and in this case, interferes) with feature-based processing.

The two individuals shown here are Woody Allen and Oprah Winfrey.

Fig. 3. Images which contain exclusively contour information

are very difficult to recognize, suggesting that high-spatial

frequency information, by itself, is not an adequate cue for

human face recognition processes. Shown here are

Jim Carrey (left) and Kevin Costner.
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distance, the eyebrows continue to make an important
contribution to the geometric and photometric structure of

the observed image. Also, since eyebrows sit atop a conve-

xity (the brow ridge separating the forehead and orbit), as

compared to some other parts of the face, they may be less

susceptible to shadow and illumination changes. Further,

although the eyebrows can undergo a wide range of move-

ments, the corresponding variations in the appearance of

the eyebrows themselves do not rival those observed with-
in the eyes and mouth, for example, as they run through

the gamut of their own movements and deformations.

3) Result 6: Important Configural Relationships Appear to
be Independent Across the Width and Height Dimensions:
Taking up where the previous result left off, we can ask

what aspects of the spatial structure of a head are impor-

tant for judgments of identity? At least a few computer
vision systems involve precise measurements of attributes

such as inter-eye distance, width of mouth, and length of

nose. However, it appears that the human visual system

does not depend critically on these measurements.

Evidence in favor of this claim comes from investigations

of recognition with distorted face images [35]. A face can

be compressed greatly, with no loss in its recognizability

(see Fig. 6). Clearly, such compressions play havoc with
absolute interfeature distance measurements, and also

distance ratios across the x and y dimensions. Neverthe-

less, recognition performance stays invariant. One set of

spatial attributes that stay unchanged with compressions

are ratios of distances within the same dimension. It is

possible then that human encoding of faces utilizes such

ratios (we refer to them as iso-dimension ratios), and this

might constitute a useful strategy for computer vision
systems as well. Why might the human visual system have

adopted such a strategy, given that image compressions
were not particularly commonplace until the recent advent

of photography? To a limited extent, rotations in depth

around the x and y axes approximate two-dimensional

(2-D) compressions. Perhaps the human visual system

has adopted an iso-dimension ratio encoding strategy to

obtain a measure of tolerance to such transformations.

C. Nature of Cues Used: Pigmentation,
Shape, and Motion

1) Result 7: Face-Shape Appears to be Encoded in a Slightly
Caricatured Manner: Intuitively, successful face recognition

requires that the human visual system should encode

previously seen faces veridically. Errors in the stored

representation of a face obviously weaken the potential to

match new inputs to old.
However, it has been demonstrated that some depar-

tures from veridicality are actually beneficial for human

face recognition. Specifically, Bcaricatured[ versions of

faces have been demonstrated to support recognition per-

formance at least equal to or better than that achieved with

veridical faces [63]. Caricatured faces can be created to

exaggerate deviations in shape alone [3] or a combination

of deviations in both shape and pigmentation cues [1]. This
is illustrated in Fig. 7. In both cases, subjects display small,

but consistent, preferences for caricatured faces as

determined by several different measures [43], [44]. Shape

caricaturing is evident for objects other than faces as well

[27] suggesting that caricatured representations may be a

widely applied strategy.

These results have been taken to suggest a norm-based

representational space for faces, often referred to in the
literature as Bface space[ [82]. This hypothesis may

usefully constrain the kinds of encoding strategies em-

ployed by computational face recognition systems. It

Fig. 6. Even drastic compressions of faces do not render them

unrecognizable. Here, celebrity faces have been compressed to 25%

of their original width. Yet, recognition performance with this set

is the same as that obtained with the original faces.

Fig. 5. Sample stimuli from Sadr et al.’s [70] experiment assessing

the contribution of eyebrows to face recognition: original images

of President Richard M. Nixon and actor Winona Ryder,

along with modified versions lacking either eyebrows or eyes.
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should also be noted that caricature effects tend to be

strongest in images that are somehow degraded (line

drawings, rapidly presented images). This may suggest that

the exaggeration of individual variation plays a more

important role in recognition when ordinary processing is
compromised. At the very least, an interesting test for any

recognition scheme is whether or not it displays Bcarica-

ture effects[ similar to those found in human recognition.

2) Result 8: Prolonged Face Viewing Can Lead to High-
Level Aftereffects, Which Suggest Prototype-Based Encoding:
Visual aftereffects that occur following prolonged exposure

to an Badapting[ stimulus have yielded many insights into
the neural processing of basic visual attributes like motion,

orientation, and color. In recent years, it has been shown

that adaptation can lead to powerful aftereffects for more

complex stimuli such as basic shapes [78] and faces [85].

The basic phenomenon of seeing any sort of

aftereffect following prolonged viewing of a particular

face stimulus provides strong evidence for norm-based

contrastive coding of faces. The induced aftereffect can be
as straightforward as a face distorted in the opposite

manner as the adapting face [85], or as complex as an

Banti-face[ with a specific identity and no discernible

distortions (see Fig. 8), suggesting multiple dimensions

along which neural populations can be tuned. Further-

more, there is good reason to suspect that these

aftereffects are the result of adaptation at relatively high

levels of the visual system. Face aftereffects are robust to
rotations of the face image [84] as well as changes in size

[93], ruling out contributions from lower level mechan-

isms that process very small image regions.

Face adaptation and the associated aftereffects make

Bface space[ a real neural possibility rather than a useful

metaphor and also provide a means for examining its

structure. For example, recent work shows that it is pos-

sible to simultaneously induce distinct distortion after-
effects for male and female faces, suggesting separate

neural substrates for each gender [47].

In terms of computational models, face aftereffects

provide both a clue to a useful encoding strategy

(prototype-based encoding with high-level Bcontrast[)
and an interesting test for existing systems (determining

whether identity-specific biases can result from exposing a

model to a particular individual). These phenomena also

indicate that human face perception is a highly plastic

process, adjusting itself continually to the faces that

surround us [64], [86].

3) Result 9: Pigmentation Cues Are at Least as Important as
Shape Cues: There are two basic ways in which faces can

differVin terms of their shape, and in terms of how they

reflect light, or their pigmentation. By Bpigmentation,[ we

refer to all surface reflectance properties, including albedo,

hue, specularity, translucency, and spatial variation in

these properties. When referring to all surface reflectance

properties of faces, we prefer the term Bpigmentation[ (or

Bsurface appearance[) to the terms Btexture[ or Bcolor,[
which invite confusion because they are commonly used to

refer to specific subsets of surface reflectance properties

(spatial variation in albedo and greater reflectance of

particular wavelengths, respectively).

Recent studies have investigated whether shape or

pigmentation cues are more important for face recognition.

The approach taken has been to create sets of faces that

differ from one another in terms of only their shape or only
their pigmentation, using either laser-scanned models of

faces [57], artificial faces [68], or morphing photographs of

faces (in which case shape is defined in terms of the 2-D

Fig. 8. Faces and their associated ‘‘anti-faces’’ in a schematic face

space. Prolonged viewing of a face within a green circle will cause

the central face to be misidentified as the individual within

the red circle along the same ‘‘identity trajectory’’ (from [45]).

Fig. 7. Example of a face caricature. (A) Average female face for a

particular face population is displayed, as well as a (B) ‘‘veridical’’

image of an exemplar face. (C) We create a caricatured version

of the exemplar by moving away from the norm, thus exaggerating

differences between the average face and the exemplar. Result is

a face with ‘‘caricatured’’ shape and pigmentation. Such caricatures

are recognized as well or better than veridical images.
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outlines of the face and individual features, pictured in
Fig. 9) [68]. With each of these classes of stimuli, subjects

have performed about equally well using either shape or

pigmentation cues. This provides evidence that the two

kinds of cues are used about equally by humans to recognize

faces. A study from our laboratory investigating the use of

these cues for the recognition of familiar faces also found

that shape and pigmentation are about equally important.

An implication of this work is that artificial face recognition
systems would benefit from representing pigmentation as

well as shape cues.

4) Result 10: Color Cues Play a Significant Role Especially
When Shape Cues Are Degraded: The luminance structure of

face images is undoubtedly of great significance for

recognition. Past research has suggested that the use of

these cues may adequately account for face-identification
performance with little remaining need to posit a role for

color information. Furthermore, people tend to accurately

identify faces that are artificially colored [40]. However,

recent evidence [89] counters the notion that color is

unimportant for human face recognition and suggests

instead that when shape cues in images are compromised

(say, by reductions in resolution), the brain relies on color

cues to pinpoint identity. In such circumstances, recogni-
tion performance with color images is significantly better

than with gray-scale images. Precisely how does color

information facilitate face recognition? One possibility is

that color provides diagnostic information. The expression

Bdiagnostic information[ refers to color cues that are spe-

cific to an individual, for instance the particular hue of

their hair or skin that may allow us to identify them. On

the other hand, color might facilitate low-level image
analysis, and thus indirectly aid face recognition. An

example of such a low-level task is image segmentationV
determining where one region ends and the other starts.

As many years of work in computer vision has shown [20],

[29], this task is notoriously difficult and becomes even

more intractable as images are degraded. Color may

facilitate this task by supplementing the luminance-based

cues and thereby lead to a better parsing of a degraded face
image in terms of its constituent regions. Experimental

data favor the second possibility. Recognition performance

with pseudo-colored face images (which do not contain

diagnostic hue information) is just as high as with natural

color images (and both are significantly better than

grayscale images, when shape cues are degraded). Fig. 10

illustrates this idea. The images show the luminance and

color components of sample face inputs. They suggest that
color distributions can supplement luminance information

to allow for a better estimation of the boundaries, shapes,

and sizes of facial attributes such as eyes and hair lines.

Fig. 10. Examples that illustrate how color information may facilitate

some important low-level image analysis tasks such as segmentation.

(a) Hue distribution (right panel) allows for a better estimation

of the shape and size of the eyes than the luminance information

alone (middle panel). Left panel shows the original image. Similarly,

in (b), hue information (right panel) allows for a better segmentation

and estimation of the location and shape of hair line than just

luminance information (middle panel). This facilitation of low-level

analysis happens with other choices of colors as well, such as in

the pseudo-color image shown on the left in (c). Hue distribution

here, as in (b), aids in estimating the position of facial attributes

such as hair line.

Fig. 9. Faces in the bottom row are all images of laser-scanned faces.

They differ from one another in terms of both shape and pigmentation.

Faces in the middle row differ from one another in terms of their

pigmentation but not their shape, while faces in the top row differ

from one another in terms of their shape but not their pigmentation.

From the fact that the faces in either the top or middle row do not

look the same as each other, it is evident that both shape and

pigmentation cues play a role in facial identity.

Sinha et al. : Face Recognition by Humans: Nineteen Results Researchers Should Know About

1954 Proceedings of the IEEE | Vol. 94, No. 11, November 2006



5) Result 11: Contrast Polarity Inversion Dramatically
Impairs Recognition Performance, Possibly Due to Compro-
mised Ability to Use Pigmentation Cues: Skilled darkroom

technicians working in the photo retouching industry

several decades ago noticed that faces were particularly

difficult to recognize when viewed in reversed contrast, as

in photographic negatives (as illustrated in Fig. 11).

Subsequently, the phenomenon has been studied extensive-

ly in the vision science community, with the belief that
determining how recognition can be impaired helps us

understand how it works under normal conditions. Contrast

negation is a reversible manipulation that does not remove

any information from the image. Though no information is

lost, our ability to use the information in the image is

severely compromised. This suggests that some normally

useful information is rendered unusable by negation.

When pigmentation cues are unavailable, as in uni-
formly pigmented three-dimensional (3-D) face models

(derived from laser scans) or in other stimuli for which

pigmentation cues are unavailable (see Result 9 for ex-

amples), recognition is not significantly worse with nega-

tive contrast [8], [69]. This suggests that pigmentation

cues might be disrupted by negation. Other work with

uniformly pigmented face models has found evidence that

shading cues are disrupted by contrast negation, but only
for faces lit from above [48]. These findings suggest that

human face recognition uses representations that are

sensitive to contrast direction and that pigmentation and

shading play important roles in recognition.

6) Result 12: Illumination Changes Influence General-
ization: Some computational models of recognition assume

that a face must be viewed under many different
illumination conditions for robust representations. How-

ever, there is evidence that humans are capable of

generalizing representations of a face to radically novel
illumination conditions. In one recent study [2], subjects

shown a laser scanned image of an unfamiliar face with

illumination coming from one side, were subsequently

shown a face illuminated strongly from the other side, and

were asked whether both images were of the same face

(see Fig. 12). Subjects were well above chance at deciding

whether the second face was the same as the first,

indicating significant ability to generalize the representa-
tion of the face to novel illumination conditions. However,

the subjects were significantly impaired at this task relative

to when the two faces were presented under the same

illumination, indicating that the generalization to novel

illumination conditions is not perfect.

An implication of this result is that human recognition

of faces is sensitive to illumination direction, but is capable

of significant generalization to novel illumination condi-
tions even after viewing only a single image.

7) Result 13: View-Generalization Appears to be Mediated
by Temporal Association: Recognizing a familiar face across

variations in viewing angle is a very challenging compu-

tational task that the human visual system can solve with

remarkable ease. Despite the fact that image-level dif-

ferences between two views of the same face are much
larger than those between two different faces viewed at the

same angle [56], human observers are somehow able to

link the correct images together.

It has been suggested that temporal association serves as

the Bperceptual glue[ that binds different images of the

same object into a useful whole. Indeed, close temporal

association of novel images viewed in sequence is sufficient

to induce some IT neurons to respond similarly to arbitrary
image pairs [53]. Behavioral evidence from human

observers exposed to rotating Bpaperclip[ objects supports

rapid learning of image sequences as well [74], [75].

In terms of human face recognition, temporal associ-

ation of two unique faces (one frontally viewed, the other

viewed in profile) has been demonstrated to have intri-

Fig. 11. Image contains several well-known singers, whose likenesses

would be easily recognizable to many readers of this publication.

However, when presented in negative contrast, it is difficult,

if not impossible, to recognize them. (Photographed during the

recording of ‘‘We Are the World’’ song.)

Fig. 12. Stimuli from Braje et al. [2]. These two images demonstrate

the kind of lighting used in this experiment. After being shown an

image like the one on the left, subjects were well above chance at

determining whether a subsequently presented image such as

the one on the right represented the same or a different individual

(in this case the same).
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guing consequences for recognition. Brief exposure to

movies containing a rotating head which morphs between
one individual and another as it rotates from frontal to

profile views can impair observers’ ability to distinguish

between the two faces contained in the sequence [83] (see

Fig. 13).

Taken together, these results suggest that the temporal

proximity of images is a powerful tool for establishing

object representations. Studying recognition performance

using images that lack a temporal context may be a pro-
found handicap to our understanding of how view

invariance is achieved. Exploring image sequences using

mechanisms that make explicit temporal associations [22]

may be a powerful means for view generalization.

8) Result 14: Motion of Faces Appears to Facilitate
Subsequent Recognition: Do dynamic cues aid face recogni-

tion? The answer is Byes[ but only in some cases. Rigid
motion (such as that obtained from a camera rotating

around a motionless head) can facilitate recognition of

previously viewed faces [58], [71] but there seems to be

very little, if any, benefit of seeing these views during the

learning phase. By contrast, nonrigid motion (where the

individuals exhibit emotive facial expressions or speech

movements) plays a greater role. Experiments in [41], using

subtle morphs of form and facial motion in novel (i.e.,
unfamiliar) faces, showed that nonrigid facial motion from

one face applied to the form of another face can bias an

observer to misidentify the latter as the former (see

Fig. 14). Experiments with famous (i.e., highly familiar)

faces [42] again showed a facilitation in recognition with
dynamic cues from expressive or talking movements, but

not from rigid motion. Facilitation was most pronounced

for faces whose movement was judged as Bdistinctive.[
Note also that facilitation comes from a natural sequence of

moving images, not merely from having more views avail-

Fig. 13. Time course of sequences shown to observers in Wallis and Bulthoff [83]. Faces �1 and �2 are each used as the frontally viewed face

in separate sequences, and combined with the other face profile in their respective movies. 3/4 morphs between �1 and �2 are used to

interpolate between the frontally viewed faces and the profiles to create a smooth motion sequence. Same/Different performance for faces

appearing in the same sequence is impaired relative to pairs of faces appearing in different sequences.

Fig. 14. Facial motion from expressions and talking were morphed

onto forms of ‘‘Lester’’ and ‘‘Stefan.’’ Subjects could be biased to

identify an anti-caricatured (morphed towards the average) form

of Lester as Stefan when Stefan’s movements were imposed

onto Lester’s form. (From [41].)
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able: The facilitation is greatly lessened when the same

frames are presented in random order or in a static array.

These results suggest that face motion is more than just

a sequence of viewpoints to the face recognition system.

The dynamic cues from expressive and talking movements

provide information about aspects of facial structure that

transcend the gains of simply having multiple viewpoints.

D. Developmental Progression

1) Result 15: Visual System Starts With a Rudimentary
Preference for Face-Like Patterns: What, if any, are the face-

specific biases that the human visual system starts out with?

The answer to this question will help a computer vision

researcher decide between two alternatives: 1) program
explicit face-specific templates into a face recognition

system or 2) allow implicit templates to form through

learning processes, be they face-specific or object-general.

Newborns selectively gaze at Bface-like[ patterns only

hours after birth. A pattern that is face-like can be some-

thing as simple as that shown in Fig. 15(a): three dots

within an oval that represent the two eyes and a mouth. An

impossible face (created by vertically inverting the triad of
dots) does not attract the newborn’s attention as much as

the more normal face. However, the specificity of the

response to the three-dot arrangement has been called into

question. More recent work [73] suggests that newborns

simply prefer Btop-heaviness[ [Fig. 15(b)]. Thus, it remains

unclear whether this is a general preference (perhaps with

no practical significance) or a face-specific orienting

response to prime the infant in bootstrapping its nascent
face recognition system. Even if this preference really is an

innate face-orienting mechanism, it may be more for the

benefit of the mother (e.g., to form the mother–child bond)
than the infant’s face processing capabilities.

A simple arrangement of three dots within an oval may

serve as an appropriate template for detecting faces in the

bootstrapping stages of a face-learning system. Similar

templates have been used with reasonable success in some

applications (for example, [76]) of face detection.

2) Result 16: Visual System Progresses From a Piecemeal to
a Holistic Strategy Over the First Several Years of Life: Normal

adults show a remarkable deficit in recognition of inverted

faces versus upright faces, whereas the deficit is quite

small for inverted images of nonface objects such as

houses [88]. A number of studies have shown, however,

that this pattern of results takes many years to develop

([13], [34], [50], [54], [55], [61], [72]). Six-year-old

children are not affected by inversion when it comes to
recognizing seen faces in a seen–unseen pair [13]; eight-

year-olds show some inversion effect and ten-year-olds

exhibit near adult-like performance (see Fig. 16). In

[54], the authors selectively manipulated spacing (moving

the location of features on a face) versus features (taking

eyes or mouth from different faces) and found what may be

the source of the developmental progression of the inver-

sion effect: six- and eight-year-olds show a relative deficit
in the processing of spacing in both upright and inverted

faces, but ten-year-olds resemble adults in that they show

the deficit for inverted but not upright faces. Thus, it looks

as though the processing of spacing matures later than

featural processing. Interestingly, although six-year-old

children are not sensitive to inversion in the tests men-

tioned previously, they are susceptible to the Thatcher Il-

lusion (Thompson, 1980 [46]), suggesting that the limited
holistic processing that is available to the six-year-old is

sufficient for orientation-sensitive local feature parsing.

This pattern of behavior suggests that over the course

of several years, a shift in strategy occurs. Initially, infants

and toddlers adopt a largely piecemeal, feature-based

strategy for recognizing faces. Gradually, a more sophis-

ticated holistic strategy involving configural information

evolves. This is indirect evidence for the role of configural
information in achieving the robust face recognition

performance that adults exhibit ([24], [65]).

E. Neural Underpinnings

1) Result 17: Human Visual System Appears to Devote
Specialized Neural Resources for Face Perception: Whether or

not faces constitute a Bspecial[ class of visual stimuli has
been the subject of much debate for many years. Since the

first demonstrations of the Binversion effect[ described

previously [88], it has been suspected that unique cogni-

tive and neural mechanisms may exist for face processing

in the human visual system.

Indeed, there is a great deal of evidence that the

primary locus for human face processing may be found on

Fig. 15. (a) Newborns preferentially orient their gaze to face-like

pattern on top, rather than one shown on bottom, suggesting some

innately specified representation for faces (from [36]). (b) As a

counterpoint to idea of innate preferences for faces, Simion et al. [73]

have shown that newborns consistently prefer top-heavy patterns

(left column) over bottom-heavy ones (right column). It is unclear

whether this is the same preference exhibited in earlier work,

and if it is, whether it is face-specific or some other general-purpose

or artifactual preference.
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the fusiform gyrus of the extra-striate visual cortex [38],

[51]. This region shows an intriguing pattern of selectivity

(schematic faces do not give rise to much activity) and

generality (animal faces do elicit a good response) [80],

suggesting a strong domain-specific response for faces (see

Fig. 17). In keeping with behavioral results, the Bfusiform
face area[ (FFA) also appears to exhibit an Binversion

effect[ [39]. Overall, the characterization of the FFA as a

dedicated face processing module appears very strong.

However, it must be noted that the debate over faces

being Bspecial[ is far from over. It has been suggested

that rather than being a true Bface module,[ the FFA

may be responsible for performing either subordinate

or Bexpert-level[ categorization of generic objects. There
are results from both behavioral studies [18], [25] and

neuroimaging studies [26] that lend some support to this

Bperceptual expertise[ account. Recent findings appear to

favor the original Bface module[ account of the FFA’s

function, however [28].

The full breadth and depth of the arguments

supporting both positions are beyond the scope of this
review (see [52] for a more thorough treatment), but it is

important to recognize that specialized face processing

mechanisms in the human visual system are a very real

possibility. Whatever its ultimate status, the response

profile of the FFA provides a potentially valuable set of

constraints for computational systems, indicating the

extent of selectivity and generality we should expect

from face recognition systems.

Fig. 16. Generally, six-year-olds are rather poor at upright and inverted faces. As their age approaches ten years, their performance improves

dramatically on upright faces, but hardly any improvement is exhibited on inverted faces. (Data from Carey and Diamond, 1971.)

Fig. 17. Upper left, an example of FFA in one subject, showing

right-hemisphere lateralization. Also included here are example

stimuli from Tong et al. [80], together with amount of percent signal

change observed in FFA for each type of image. Photographs of human

and animal faces elicit strong responses, while schematic faces and

objects do not. This response profile may place important constraints

on the selectivity and generality of artificial recognition systems.

Fig. 18. Example of a monkey IT cell’s responses to variations on a face

stimulus (from Desimone et al. [17]). Response is robust to many

degradations of the primate face (save for scrambling) and also

responds very well to a human face. Lack of a response to the hand

indicates that this cell is not just interested in body parts, but is

specific to faces. Cells in IT cortex can produce responses such as

these with a latency of about 120 ms.
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2) Result 18: Latency of Responses to Faces in IT Cortex is
About 120 ms, Suggesting a Largely Feedforward Computation:
Human observers can carry out visual recognition tasks

very rapidly. Behavioral RTs are already quite fast and re-

present a potentially large overestimate of the time re-

quired for recognition due to the motor component of

signaling a response. Indeed, when a neural marker of re-

cognition is used, accurate performance on such seemingly

complex tasks as determining the presence/absence of an
animal in a natural scene appears to require as little as

50 ms [79].

Recently, it has been shown that though this particular

task (animal/no animal) seems quite complicated, it may

be solvable using very low-level visual representations

[37]. That said, there is neurophysiological evidence that

truly complex tasks, such as face recognition, may be

carried out over a surprisingly short period of time.
Neurons in the primate inferotemporal (IT) cortex can

exhibit selectivity to stimuli that are more complicated

than the simple gratings and bars that elicit responses from

cells in early visual areas. In particular, it has been noted

that there are some cells in IT cortex that are selective for

faces [17] (see Fig. 18). Moreover, the latency of response

in these cells is in the neighborhood of 80–160 ms [62].

More recent results have demonstrated that fine-grained
discrimination of face identity or expression is possible at

approximately 50 ms after exposure [77].

The computational relevance of these results is that

recognition as it is performed up to the level of IT cortex

probably requires only one feedforward pass through the

visual system. Feedback and iterative processing are likely

not major factors in the responses recorded in these

studies, especially if the stimuli are clear, undegraded
images. While impoverished images will likely require

some amount of iterative processing (and thus more time),

relatively clean images can be dealt with very rapidly. This

is a very important constraint on recognition algorithms, as

it indicates that sufficient information must be extracted

immediately from the image and cannot necessarily be

Bcleaned up[ later.

3) Result 19: Facial Identity and Expression Might be
Processed by Separate Systems: To what extent is the

processing of facial identity bound with the processing of

facial expression? That is, is it possible to extract facial

expression independently of the identity and vice versa, or

are the two inextricably linked? Beyond being a mere

academic point, the computational implications of this

question would determine whether a biologically based
implementation would be able to identify a person without

taking into account the person’s expression or to judge the
facial emotions in a human–computer interaction appli-

cation without going through the process of extracting a

representation of identity.

The most popular theoretical model [5] and a recent

neural systems model [33] both propose a separation of

identity and expression processes early in the facial

perception pathway, leaving each of these processes to

act in parallel using distinct representations. This account
has been supported by a large body of evidence. Behavioral

studies [4] show that familiarity does not aid expression

reportability; functional brain imaging [87] has identified

distinct brain areas for identity versus expression; brain-

injured patients [81], [92] have provided examples of

selective impairments in identity or expression processing;

and electrophysiology studies in primates [32] find that

single neurons can be identified which are selective for
either identity or expression. See a recent review of such

results in [12].

On the other hand, Calder and Young [12] point out

that although there seems to be a significant amount of

dissociation between identity and expression, most studies

do leave some room for overlap, perhaps at the represen-

tational stage. For example, although some neurons

responded only to identity and some only to expression
in the Hasselmo et al. study [32], a smaller subset of

neurons responded to both factors. Such ambiguity leads

Calder and Young to propose a statistical account which

predicts a representation of identity, expression, and

identity expression (i.e., the combination of the two)

stemming from a uniform perceptual process. They still

agree, however, that these representations are then

processed largely independently.

II . CONCLUSION

The twin enterprises of visual neuroscience and computer

vision have deeply synergistic objectives. An understand-

ing of human visual processes involved in face recognition

can facilitate and, in turn be facilitated by, better

computational models. Our presentation of results in this
paper is driven by the goal of furthering crosstalk between

the two disciplines. The observations included here

constitute 19 brief vignettes into what is surely a most

impressive and rather complex biological system. We hope

that these vignettes will help in the ongoing computer

vision initiatives to create face recognition systems that

can match, and eventually exceed, the capabilities of their

human counterparts. h
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