
1 Introduction
The operation of comparing images is an integral component of many visual routines.
Key visual tasks such as stereo-depth estimation and motion flow extraction depend on
being able to establish correspondence between different image regions across space or
time (Dhond and Aggarwal 1989; Grimson 1982; Hildreth 1987; Marr and Poggio 1979;
Mayhew and Frisby 1981). Correspondence, in turn, depends critically on comparing image
regions and evaluating their mutual similarity. Image comparisons play an even more
obvious role for tasks like object recognition. In order to be able to build accurate
models of these visual abilities, we need to use formally specifiable image similarity
metrics that mimick their human counterparts.

The need for choosing appropriate image similarity metrics can be motivated from
a more pragmatic perspective as well. The rapidly growing preponderance of digital
images in diverse aspects of everyday life necessitates automatic methods for their
manipulation, storage, and use. Central to many operations on digital images are
image similarity metrics (`distance functions' or, more generally in information theory,
`distortion measures') that quantify how well one image matches another. Three broad
classes of applications that rely on appropriately chosen image similarity metrics are
image search, image compression, and image quality assessment.

Thus, similarity metrics are important both for understanding human vision and
for improving image processing in applied settings. Indeed, the two goals are comple-
mentary. Computational metrics can be improved by approximating human similarity
judgments, while human similarity judgments can be better understood by comparing
them to formally characterized computational similarity metrics.

It is worth pointing out that a similar motivation underlies a growing body of
work in the computer graphics domain. Analogous to the problem of choosing a
similarity metric on perceptual grounds is the task of selecting (or devising) rendering
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schemes that are computationally efficient and maximize perceptual realism (Bartz
et al 2008; Ramanarayanan et al 2007; Stich et al 2011). The perceptual criterion has
proven to be a very fruitful one for narrowing down the set of algorithmic possibilities
since it perfectly captures the eventual usage scenario of computer graphics renderings,
and also enables significant complexity reduction by exploiting limitations of the
human perceptual apparatus (for an example, see Ostrovsky et al 2005).

In both human and computational vision research, a very widely used class of
image similarity metrics involves performing some operation on the differences between
corresponding pixels in two images, then summing over these modified differences. These
are referred to collectively as the LP family of similarity metrics, or the Minkowski
metric. The general form of the p norm is:
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The most commonly used members of this family are the L1 and L2 norms. Formally,
the L1 and L2 norms are defined as follows: For two n-component vectors �a and �b,
L1 distance between the vectors is:Xnÿ1
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The L1 metric is also called the Manhattan distance or the Sum of Absolute Error
(SAE), and the L2 metric is also called the Euclidean distance or Sum of Square
Error (SSE). Examples of studies that have employed these norms, or slight variants
in models of visual processing, include: (Balas and Sinha 2006; Bu« lthoff et al 1989;
van Doorn and Koenderink 1983; Fo« rstner 1993; Jenkin et al 1991; Liu et al 1995;
Ludwig et al 1994). Examples of their use in more applied settings include: in image
compression (Baker and Gray 1982; Delac et al 2008; Gersho and Ramamurthi 1982;
Goldberg et al 1986; Mathews 1992; Mathews and Khorchidian 1989); in image retrieval
(Kwasnicka et al 2011; Rubner et al 1997; Tao and Dickinson 1996); in image quality
assessment (Ahumada 1993). Though many implementations utilize metrics that are
more complicated, incorporating specific task-dependent features (Eckert and Bradley
1998; Frese et al 1997; Jayant et al 1993; Watson 1993), they are often modifications
made to simpler metrics such as L1 and L2.

Currently both these metrics are used commonly and interchangeably. The L1
metric has the advantage of being slightly less computationally expensive, involving
no product terms. This can be relevant in computationally demanding applications
such as large database search, where even small improvements in computational effi-
ciency can lead to significant time savings. The L2 metric has the advantage of being
continuously differentiable. Yet there is no reason to believe that either of these reasons
is of any concern to the human visual system. Since the end result of many image-
analysis operations is intended to be viewed by humans, it is the human visual system
that in many applications is the ultimate arbiter of the similarity of images. Thus, the
most relevant criterion for deciding between the two metrics may be perceptual rather
than computational. Surprisingly, very few studies have investigated perceptually based
differences between the L1 and L2 norms, and none, to the best of our knowledge, have
done so systematically. Mathews and Hahn (1997) have commented on the percep-
tual interchangeability of the metrics. DeVore and colleagues (1992) have advocated the
perceptual superiority of the L1 metric in the domain of wavelet transform coding,
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based anecdotally on their own subjective judgment of a handful of images. To date,
however, a rigorous, perceptually based, comparison of the two metrics has not been
performed. The purpose of the present study is to perform such a comparison, in order
to determine whether one of the two similarity metrics is closer to human notions
of what it means for two images to look similar. The results could provide a well-
motivated way to choose between the L1 and L2 metrics for image-analysis tasks.
Furthermore, determining which computational metric better captures human notions
of similarity can be used to derive inferences regarding similarity criteria the visual
system uses. For instance, an important way in which the L1 and L2 norms differ is in
terms of how much they penalize outliers. By comparing these two metrics, we can
indirectly assess the significance of outliers for human observers. With these motivations
in mind, we experimentally investigated whether humans prefer the image matches chosen
by the L1 or the L2 metric.

Admittedly, the capabilities of simple metrics like L1 and L2 in capturing high-level
image meaning are rather limited. For tasks like semantic content-based image classi-
fication, or object recognition under significant transformations, these metrics need to
be augmented with sophisticated representations and, often, statistical classifiers. The
goal of our study, however, is to examine the effectiveness of the similarity metrics for
comparing image structure, without the confounding influence of high-level semantics.
Though modest, this goal matches the task requirements involved in several important
image-analysis settings. These include local image matching (for instance, to establish
correspondence between points in a stereo pair or frames of a motion sequence) and
situations where images are not semantically meaningful (say synthetic aperture radar
images). It is also a necessary first step toward developing more sophisticated metrics
that attempt to handle image semantics, as these metrics typically rely on one or another
simple similarity metric for providing a basic set of distances that can then serve as inputs
for further analysis/classification.

Pursuant to the discussion above, an important issue that arises in the design of
experiments for comparing low-level image similarity metrics is how to deal with the high-
level semantic content in images. Such content (for instance, people, flowers, objects, etc)
may be more salient to viewers than the abstract patterns of light and dark that
constitute the image structure on which similarity metrics operate. This may cause
judgments of perceptual similarity to be influenced by high-level semantic considera-
tions. For example, a flower vase and a garden in bloom may be declared to be similar
on the basis of high-level information, even though they are quite different at the level
of image structure. Figure 1 shows an example of how semantic considerations can
lead to classifications that have little to do with similarity at the level of the image
structure. If metrics such as the L1 and L2 norm are used to determine the similarity
of images with semantic information, they often produce results that may seem poor
to humans, for whom the semantic information is apparent and critical. A study by
Rogowitz and colleagues (1998) also highlighted the role that semantic information plays
in human judgments of image similarity.

Because semantic content is not the focus of our study, we needed to find a way
to control for it. Toward this end, we conducted our comparisons of the two metrics
in two different experiments. One experiment preserved semantics and the other
dispensed with it. In the first experiment, participants viewed images with recogniz-
able semantic content that were composed of many small fragments. Each fragment
individually was too small to have any high-level meaning. The computational simi-
larity metrics were used to select these image fragments. In the second experiment,
participants viewed these single fragments in isolation, such that there was nothing
recognizable in the images. The trials of both experiments involved asking participants
to decide which of two images better matched a target image. In these trials one of
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the two images was chosen/composited from a library of images using the L1 metric
while the other image was based on the L2 metric. Thus, on each trial the participants
had to decide whether they agreed more with the similarity judgment of the L1 or L2
metric.

2 General methods
Both experiments utilized the same two-alternative forced-choice design, in which
participants were instructed to choose which of two (probe) images looked most like a
reference (target) image. Participants indicated their preference by pressing a keyboard
button, and were not timed, although they were allotted a maximum of 10 s to complete
each trial. The same display configuration was used in all trials. This consisted of the
three images in the center of the screen with the target image above and the two probe
images below. In each trial of the first experiment, one of the two probe images was
derived via vector quantization (detailed below) using the L1 metric as the distortion
function and the other probe image was derived using the L2 metric. The left ^ right
ordering of the two probe images was counterbalanced across trials and conditions.
Participants were not required to determine which of the two probe images was derived
using the L1 metric and which using the L2 metric. Each experiment consisted of
384 trials. Participants sat approximately 75 cm from the display monitor in a room
with low ambient illumination. Each image subtended 28 of visual angle. Twenty-three
individuals participated as participants in the two experiments. One subject, RPR, partici-
pated in both experiments and is an author of this report. The remaining participants were
paid volunteers, eleven participating in the first experiment and eleven participating in
the second. Each experiment thus employed twelve participants.

3 Experiment 1
3.1 Methods
The images in the first experiment were generated by vector quantization (VQ)
(Nasrabadi and King 1988). Our codebook was a library of randomly selected natural
images. Each fragment of the target image was compared with every other fragment of the
same size in each image in the library using an image similarity metric, and replaced by
the fragment judged to be the most similar by the metric. After this was performed on
each fragment in the target image, a new image was created that was composed entirely of
fragments from the library. Figure 2a shows an example of image reconstruction by VQ.

Figure 1. [In color online, see http://dx.doi.org/10.1068/p7063] Semantic criteria can lead to image
groupings that are unrelated to similarity at the level of image structure. All of the images shown
above belong to the semantic category of tulips (`tulip flower', `tulip bulbs', `tulip field'). While the
ability to classify images based on semantic criteria is of use in some settings, for the purposes
of this paper, we seek to focus on image level similarity that can be captured by metrics such
as the L1 and L2 norms.
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Our decision to use the VQ scheme for generating experimental stimuli was motivated
primarily by the need to control for semantic content across images being compared.
The fact that this decision makes our results be directly applicable for the design of better
VQ systems is a useful side effect.

Two important parameters for a VQ scheme are the number of images in the
library and the size of the fragments. Larger libraries and smaller fragment sizes create
images that are more similar to the target images. On the other hand, increasing the
fragment size and/or decreasing the library size will typically result in reconstructed
images that look less like their target images, but have the benefit of yielding greater
compression factors.

(a)

(b)

Figure 2. [In color online.] (a) In vector quantization, fragments of the target image are matched to
fragments in the library images using an image similarity metric. These fragments from the library
images then replace those in the target image, creating a reconstructed image that is composed
entirely of fragments from the library images. In this figure, the image to the left is the target image,
the middle images are the codebook, or library of images, and image to the right is an enlarged
version of the reconstructed image created by placing fragments from the library images together.
Exactly which fragments from the library are chosen to replace the target fragments is affected by
the choice of image similarity metric. The poor quality of the reconstruction here is due to the very
small size of the codebook (5 images). (b) Thumbnails of all the images used in the target and library
images. The 24 images on the left are the target images, and the 48 images on the right are the
codebook images.
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The stimuli for the experiment were created using either the L1 or the L2 metric to
choose replacement fragments from the library. The two metrics often choose different
fragments, leading to different overall reconstructions. Thus we can ask which of the
two metrics produces better reconstructions from a perceptual point of view.

72 images were selected at random from the IMSI MasterClips image catalog. The
images were a mixture of indoor and outdoor natural scenes with a variety of objects
and people at different spatial scales. Each was cropped to 1506200 pixels and converted
to grayscale. 24 of these images were used as target images to be compressed (henceforth
referred to as `reconstructed'), and 48 were used as library (codebook) images. Figure 2b
is a montage of thumbnails of all 72 images. Reconstructed images were always created
in pairs with the L1 metric in one case and L2 in the other.

To investigate whether the fragment size or library size played a role in determining
perceptual preferences, we created reconstructed images with four different fragment
sizes (565 pixels, 10610 pixels, 15615 pixels, and 20620 pixels) and four different
library sizes (6, 12, 24, and 48 images). Smaller libraries were subsets of larger libraries
(eg all of the images used in the 12-image library were used in the 24-image library). Thus,
there were 24 target images64 fragment sizes64 library sizes � 384 pairs of recon-
structed images. Each of the 24 target images appeared 16 timesöonce for each of
the 16 different conditionsöwith a different pair of reconstructed images each time.
Figure 3 shows an example trial from the condition with block size of 20620 pixels
and a library size of 48 images.

Figure 3. Sample display from experiment 1. The top image is the original. The bottom images
are reconstructions, one using the L1 norm as the distortion function and the other using the
L2 norm. Participants were instructed to indicate which of the two bottom images looked more
like the top image.
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3.2 Results
Participants displayed a small, but highly consistent preference for reconstructions
based on the L1 metric. 54% of all responses (averaged across fragment sizes and
library sizes) were made for the reconstructions with the L1 metric. Of the twelve
participants, eleven chose the L1 metric on more than 50% of the trials and the
remaining subject chose the L1 metric on 49% of the trials. Participants chose images
reconstructed with the L1 metric significantly more often than those created with the
L2 metric (Student's t11 � 3:98, p 5 0:01). The results are shown in figure 4a. There
were no significant differences in preferences across the different fragment sizes (single
factor ANOVA, p � 0:69) or library sizes (single factor ANOVA, p � 0:61). Figures 4b
and 4c show the results by fragment size and library size.
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Figure 4. [In color online.] (a) Subject preferences in experiment 1. (b) Preferences across four
different fragment sizes. Each bar represents the responses to reconstructions with a given
fragment size, averaged across all participants. Preferences for the different metrics did not
differ significantly by fragment size. (c) Preferences across four different library sizes. Each bar
represents the responses to reconstructions with a given library size, averaged across all participants.
Preferences for the different metrics did not differ significantly by library size.
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4 Experiment 2
4.1 Methods
The second experiment was identical to the first, with the exception of the stimuli.
Rather than using the entire original images and reconstructions, individual image
fragments and their best L1 and L2 matches were displayed. The fragments used
were from the 20620 pixel fragment with 48 images library condition. Of the 1680
possible fragments, 384 pairs of original fragments with their L1 and L2 image
matches were used. These pairs of original and match fragments were chosen from
across the spectrum of pairs, from fairly similar to quite different from one another.
The similarity of the pairs was determined by calculating the L1 distance between the
two matches (not between the matches and the original fragments). Because the selec-
tion of pairs was made such that there was a range of similarity of pairs, and because
their pair distances were not subsequently analyzed, the choice of the L1 norm for
this determination in no way biases the subsequent results toward either of the two
norms. Because these fragments were quite small, they were scaled to 60660 pixels by
bicubic interpolation. Figure 5a shows an example trial.

4.2 Results
Interestingly, the results from experiment 2 were qualitatively very similar to those
from experiment 1. 54% of all responses were made for the match found with the
L1 metric. Of the twelve participants, eleven chose the L1 metric on more than
50% of the trials and one subject chose the L1 metric on exactly 50% of the trials.
The participants' choices of the L1 metric were significantly greater than their
choices for the L2 metric (Student's t11 � 6:48, p 5 0:001). The results are shown
in figure 5b.
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Figure 5. [In color online.] (a) Each trial in experiment 2 consisted of a display similar to the
figure above. The top image is the original. The bottom images are the best matching frag-
ments retrieved with the L1 or the L2 metrics. Participants were instructed to choose which
of the two bottom images better matched the top image. The left ^ right ordering of the L1
and L2 reconstructions was counterbalanced across trials and conditions, and was not known
to the participants. (b) Subject preferences in experiment 2. All but one of the participants
showed a bias towards the L1 metric. One subject's preferences were exactly evenly split across
the two metrics.
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5 Discussion
We examined human perceptual preferences for image matches produced by two
widely used computational metrics. Our results showed a small but highly consistent
preference for the L1-based matches. This finding is consistent with and extends the
anecdotal assertion of DeVore et al (1992) that the L1 norm is superior in the domain
of wavelet transform coding, but is in contrast to the suggestion that the two norms
are interchangeable (Mathews and Hahn 1997).

What might underlie the preference for L1 matches? The only divergence between
the two norms is that the L2 norm squares the difference between corresponding pixels,
while the L1 norm does not. An important result of squaring for the L2 norm is that
large pixel differences will have a disproportionately large effect on the overall distance
between two image fragments. Thus the L2 metric will be more sensitive to some pixels
than to others. This sensitivity to outliers should result in the L2 metric choosing
matches that have few pixels that are very different from the corresponding target
pixels. However, the L1 matches should be better able to tolerate such pixel outliers.

To investigate whether this was true for our data, we computed difference images
for each pair of target image and library match. For each target image, two difference
images were computedöone for the L1 match and one for the L2 match. The value
of a given pixel in a difference image is the difference between the pixel value in the
match image and the pixel value in the target image. In the difference images, a large
pixel value (brighter) corresponds to a large difference between the match pixel and
the target pixel, and a small pixel value (darker) corresponds to a small difference
between the match pixel and the target pixel. Figure 6 shows histograms of all the L1
difference images and all the L2 difference images, as well as the difference between
the two histograms. The L1 difference images had more small values and slightly
more very large values. The L2 difference image contained more intermediate values.
The means of both distributions were very similarö28.0 for the L1, and 28.2 for the
L2öindicating that the few very large difference values produced with the L1 metric
were balanced out by the larger number of small values. However, the medians of the
two distributions divergedö21.6 for the L1 and 24.6 for the L2.
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Figure 6. Histograms of difference images. The X-axis indicates the difference image pixel
values, which are the differences between the pixel values of the original and match fragments.
These values run from 0 (for corresponding pixels that were exactly the same) to 255 (for
corresponding pixel pairs in which one was completely white and the other completely black).
The solid line and dotted line denote the distribution of values created by taking the difference
between matches and original images based on L1 and L2 metrics, respectively. The dashed line
is the distribution of values created by subtracting the dotted line from the solid line.
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Thus in the two sets of differences, the means are the same, while the median of
one set is lower than that of the other. It was the set with the lower median difference
that the participants considered to be most similar. These data suggest that the partici-
pants' notion of image similarity was more similar to that of the L1 norm (placing
equal weight on each pixel) than that of the L2 norm (placing greater weight on those
pixels with greater differences).

The heightened sensitivity of the L2 norm to outliers makes it more susceptible to
signal noise than the L1 norm. A computational experiment demonstrates this convinc-
ingly. The task we considered was that of face recognition. Our database comprised
10 grayscale images each of 40 different individuals (this database was compiled
by the AT&T Laboratories in Cambridge, UK; more information is available at http://
www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html). Each image was 112692 pixels
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Figure 7. [In color online.] (a) Results of a computational experiment assessing the performance
of L1-based and L2-based matching on a simple face-recognition task. Raw pixel values are used
to compute the similarity metrics. Although the two metrics perform comparably in the no-noise
condition (leftmost bar pair), with the introduction of noise in the query images, the perfor-
mance of the L2-based retrieval system falls much faster than that of the L1-based system.
(b) Same analysis as in (a), except that instead of raw pixel values, the outputs of four different
filters are used to compute the similarity metrics. The filters employed here are 363 Sobel
masks (each image is 112692 pixels) at four different orientations, as indicated.
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in size. The 10 images of a given person varied slightly in pose, expression, and
lighting. We tested the efficacy of two image matching systems, one based on the L1
metric and the other on L2 for retrieving the images of a person given one query
image. The similarity criterion used for rank-ordering the database conditioned on a
query image was simply the L1 or L2 distance computed across each entire image
in the set. For a perfect system, the top 9 returned images would all be of the person
depicted in the query image. Figure 7a shows the results. When no noise is present in
the images, the two metrics perform comparably, with L1 having a slight edge over
L2, consistent with our behavioral results reported above. However, with the introduc-
tion of noise, the results from the two metrics diverge markedly. Even small amounts
of speckle noise, wherein the values of some randomly selected pixels are clamped
at ceiling or floor, greatly reduces the hit-rate of the L2-based retrieval system. The
L1-based system, however, proves robust across a much greater range of noise.

It is worth noting that the perceptual biases towards the L1 norm, though statisti-
cally significant, are modest in magnitude. This may be attributable to multiple factors.
First, VQ reconstructions that we used in the first experiment suffered from block
artifacts (see figure 3). These artifacts, due to their perceptual salience, could have
interfered with participants' choices of images. Second, the L1 and L2 norms were
computed directly over raw pixel values. An interesting extension of this work would
involve the investigation of the effects of physiologically plausible pre-processing on
the perceptual bias towards L1 and L2 metrics. For instance, instead of computing
similarity metrics on the raw pixel values, how would the results change if the images
had first been subjected to a Laplacian operator or a Gabor filter of the kind that
are known to exist in the early stages of the visual pathway? As a first step towards
this goal, we have extended our analyses to compute relative performance of the two
metrics on the afore-described face-recognition task when the images are pre-processed
with oriented filters. Specifically, we used Sobel filters at four different orientations
following the parametric addition of noise to the original images. The results are
shown in figure 7b. Comparing them to figure 7a, it is evident that the absolute magni-
tude of performance for both metrics registers a decrease. This is because post-filtering
image information is spatially sparse and even minor misalignments result in large
costs in terms for the matching metric. However, for the purposes of the present
discussion, it is worth noticing that the relative performance of the two metrics follows
the same trend that we have observed so far, ie the L1-based matcher yields better results
than the L2-based matcher. Third, to keep the duration of experimental sessions within
reasonable lengths, the number of test images was constrained to be fairly small (24).
This does make the study susceptible to inadvertent biases in query image selection.
Finally, the participants' bias for one over the other norm might have been greater for
a different set of tasks. Indeed, results of the computational experiment reported above
bear out this expectation. Given that human responses would likely have been identical
to the ground truth on the face-recognition task, the bias for the L1 norm they would
have exhibited would have been markedly greater than for L2 for even small amounts
of image noise.

The results of these experiments give a principled reason for choosing the L1 metric
rather than the L2 metric for use in image analysis. The difference, though small, is
highly consistent and suggests that in applications related to the retrieval, manipula-
tion, and compression of natural images, use of the L1 metric should result in better
performance than that achieved with the L2 metric. In settings with significant sensor
noise, the differences may in fact prove to be quite substantial, as our computational
experiment shows. Also, the findings reported here may be of use in designing new
similarity metrics and more accurate models of human visual processes underlying such
tasks as stereo and motion correspondence that rely critically on image comparisons.
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