
Environmental Management (2018) 61:310–320
DOI 10.1007/s00267-017-0983-4

ENVIRONMENTAL ASSESSMENT

Estimating the Creation and Removal Date of Fracking Ponds
Using Trend Analysis of Landsat Imagery

Rutherford V. Platt1 ● David Manthos2 ● John Amos2

Received: 23 May 2017 / Accepted: 11 December 2017 / Published online: 5 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Hydraulic fracturing, or fracking, is a process of
introducing liquid at high pressure to create fractures in
shale rock formations, thus releasing natural gas. Flowback
and produced water from fracking operations is typically
stored in temporary open-air earthen impoundments, or
frack ponds. Unfortunately, in the United States there is no
public record of the location of impoundments, or the dates
that impoundments are created or removed. In this study we
use a dataset of drilling-related impoundments in Pennsyl-
vania identified through the FrackFinder project led by
SkyTruth, an environmental non-profit. For each
impoundment location, we compiled all low cloud Landsat
imagery from 2000 to 2016 and created a monthly time
series for three bands: red, near-infrared (NIR), and the
Normalized Difference Vegetation Index (NDVI). We
identified the approximate date of creation and removal of
impoundments from sudden breaks in the time series. To
verify our method, we compared the results to date ranges
derived from photointerpretation of all available historical
imagery on Google Earth for a subset of impoundments.
Based on our analysis, we found that the number of
impoundments built annually increased rapidly from 2006
to 2010, and then slowed from 2010 to 2013. Since newer
impoundments tend to be larger, however, the total
impoundment area has continued to increase. The methods
described in this study would be appropriate for finding the

creation and removal date of a variety of industrial land use
changes at known locations.

Keywords Trend analysis ● Landsat ● BFAST ● Hydraulic
fracturing ● Impoundments ● Marcellus shale

Introduction

Hydraulic fracturing, or fracking, is a process for extracting
natural gas from layers of shale rock under extreme pres-
sure. Gas production through hydraulic fracturing produces
massive amounts of wastewater that represents a potential
public health risk. Once a well has been drilled, millions of
liters of water, chemicals, and sand are injected at high
pressure. Flowback water then returns to the surface for
several weeks after hydraulic fracturing, but before gas
production begins (Vidic et al. 2013). Thereafter, produced
water returns to the surface along with the gas produced by
the well. Frack ponds are temporary open-air earthen
impoundments that store flowback and produced water.

Many of the chemicals used in fracking are known car-
cinogens and have been shown to cause health effects
related to the skin, respiratory and gastrointestinal systems,
kidneys, and endocrine systems (Colborn et al. 2011).
People can be exposed to frack chemicals via a number of
pathways, including from contaminated groundwater, trea-
ted wastewater in rivers and streams, and water in frack pits
and ponds. Groundwater may be contaminated when there
is poor well integrity. Studies in Pennsylvania, West Vir-
ginia, and Ohio have found that there are elevated methane
concentrations in drinking well near natural gas wells
(Darrah et al. 2014; Jackson et al. 2013; Osborn et al. 2011).
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Wastewater may be contaminated when treatment is
incomplete; treated water in Pennsylvania has been found to
have elevated levels of chloride, bromide, barium, and
radium above background levels (Warner et al. 2013).
Wastewater volume has increased substantially since 2008
and has increasingly been treated on-site, reused, or dis-
posed through injection (Rahm et al. 2013). As of 2016 the
U.S. Environmental Protection Agency (EPA) banned the
disposal of wastewater at public sewage plants (EPA 2016).
Untreated wastewater in frack ponds may also be highly
contaminated. A study of evaporation pits in New Mexico
revealed high concentrations of chemicals on EPA lists of
reportable toxic chemicals (Colborn et al. 2011). Frack
ponds are a potentially major source of hazardous air pol-
lution since they contain easily evaporable chemicals such
as formaldehyde, acrylamide, naphthalene, and others
(Shonkoff et al. 2014). In Pennsylvania, unconventional
natural gas activity metrics were found to be associated with
increased asthma exacerbations (Rasmussen et al. 2016).
Despite the air pollution potential, no states require air
monitoring of waste materials from fracking and other oil
and gas facilities (EPA 2014).

To better evaluate the potential public health effects
associated with fracking impoundments, it is important to
identify where and when fracking activities and wastewater
storage have taken place. Past studies have used both
manual and automated image classifications to identify the
location of oil and gas infrastructures. Manual image
interpretation has long been successfully used to distinguish
oil and gas infrastructures from other types of disturbances
(Pasher et al. 2013). A study focusing on the Northern Great
Plains successfully used rapid land cover mapping, a
manual photo interpretation procedure, to determine the
area affected by energy development (Preston and Kim
2016). Other studies have used ancillary data as a starting
point for manual classification. For example, researchers
examined the (often inaccurate) point locations of wells in
the Colorado Oil and Gas Conservation Commission’s
dataset and then manually digitized actual well location and
infrastructure (Baynard et al. 2017). While manual classi-
fication is usually accurate, it is difficult to scale up to large
areas or time series.

Automated image classification has also been used to
identify oil and gas infrastructure, and is more practical over
larger areas or time series. In one study, automated detec-
tion of oil and gas infrastructure was found to be highly
accurate when the infrastructure is associated with large
high-contrast forest clearings (Baker et al. 2013; He et al.
2011). However, another study found that when the areas
surrounding the oil and gas infrastructure are spatially
complex, such as when vegetation regrowth appears, auto-
mated detection is characterized by a high rate of com-
mission (Salehi et al. 2014). In areas characterized by sparse

vegetation and bare ground automated extraction works
poorly (Garman and McBeth 2014). Recently, studies have
leveraged temporally dense time series to improve classifi-
cation accuracy. For example, one study in Alberta, Canada
accurately quantified land disturbance from oil and gas
activities using normalized difference built-up index cal-
culated from annual landsat best available pixel composites
2005–2013 (Chowdhury et al. 2017). Another study, also in
Alberta, used all available summer Landsat imagery
1985–2012 to accurately identify abrupt changes in the
normalized difference wetness index associated with oil and
gas infrastructure (Pouliot and Latifovic 2016).

To identify both the location and date of fracking
impoundments, we used a hybrid method that applies both
manual and automated procedures. The location of fracking
impoundments is determined using crowdsourced (manual)
image interpretation while automated trend analysis of
Landsat imagery is used to identify when the impoundment
existed. The result is the first dataset of fracking
impoundments that includes the estimated date of creation
and removal of the impoundments. The dataset is used to
calculate the change in number of impoundments and area
of impoundments over time, and has potential applications
to a variety of environmental and public health research.

Methods

Study Area and Data

The study area for this study is the Marcellus Shale region
of Pennsylvania (Fig. 1). The Marcellus Shale is an exten-
sive area of marine sedimentary rock that contains extensive
natural gas reserves and underlies parts of New York, Ohio,
West Virginia, and Pennsylvania.

Impoundment locations

To identify the location of impoundment ponds in the
Marcellus Shale region of Pennsylvania, we used the
‘FrackFinder PA’ dataset created by SkyTruth, a remote
sensing nonprofit. The dataset was created through crowd-
sourcing of a manual image analysis process. The process
for identifying fracking impoundments comprised four main
steps (Wurster 2014):

1. SkyTruth experts identified the probable location of
active wellpads by compiling and analyzing pub-
lically available data about unconventional wells
reported to the Pennsylvania Department of Environ-
mental Protection (2016).

2. Crowdsourced volunteers visually inspected those
locations to identify active wellpads using high-
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resolution aerial survey photography on 2–3-year
intervals.

3. Crowdsourced volunteers visually identified all stand-
ing bodies of water within 0.5 km of wellpads.

4. Crowdsourced volunteers classified standing bodies
of water as fracking related.

5. SkyTruth experts verified crowd response at each
stage, and digitized fracking-related ponds.

Through this process, SkyTruth identified impoundment
ponds that existed in the 2005–2013 timeframe. We used
the centroid of the impoundment polygons to represent the
point location of the pond (Fig. 1).

Landsat imagery

To estimate when the impoundments were created and
removed, we used Landsat imagery. We downloaded 839
Landsat images from four path/rows (15/31, 16/31, 17/31,
17/32), covering most of the Marcellus shale region of
Pennsylvania (Fig. 1). The images came from all available
Landsat satellites (5, 7, and 8) January 2000–December
2016, and had less than 30% cloud cover. There were an
average of 12 images available per year for a given
impoundment point, and 80% of the images fell during the
leaf-on period (April–October). To improve comparability
between images, we used the Landsat USGS Surface
reflectance products (USGS Landsat Surface Reflectance
High Level Data Products 2016).

Data Processing

With the above data, we used trend analysis to estimate the
date that the impoundments were created and removed. Our
methods proceeded in two main steps: (1) creating a temporal
composite of all available low-cloud cover Landsat imagery,
and then (2) conducting a trend analysis of the temporal
composite at each impoundment point (Fig. 2). Trend analysis
has been used to identify forest disturbance events and
regrowth using MODIS (Schmidt et al. 2015) and Landsat
(Czerwinski et al. 2014; DeVries et al. 2015; Hermosilla et al.
2015; Hamunyela et al. 2016). In this case, it is used to
identify the creation and removal of fracking impoundments.

Image compositing

Image compositing was conducted using R (R Core Team,
2015) the Raster package (Hijmans 2015), and the Zoo
package for time series analysis (Zeileis and Grothendieck
2005). For all 839 images we masked out clouds, cloud
shadows, snow, and Landsat 7 gaps using the CFMask layer
that is packaged with the USGS surface reflectance product
(ESPA Cloud Masking – Release Notes 2016). We then
created temporal composites for normalized difference
vegetation index (NDVI), red, and near-infrared (NIR) for
each path/row. Temporal composites are multiband rasters
where each band represents a different image date (in this
case 839 distinct bands). Then, at the location of each of the
1221 impoundment points, we extracted value from each
band of the NDVI, NIR, and red temporal composites.

Fig. 1 Study area,
impoundment locations, and
landsat path/row
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Trend analysis

To conduct the trend analysis, we created a monthly time
series for each of the temporal composites (NDVI, NIR, and
red) for each impoundment point in the 2000–2016 time-
span (1221 impoundment points× 3 temporal composites
= 3663 time series). The time series were developed in
several steps. First, we created irregular time series from all
available imagery in each temporal composite. The number
of observations in each time series depends on factors, such
as cloud cover and which Landsat satellites were active at a
given time. Next, we interpolated missing values for each
time series and then aggregated to monthly values (example
output: black line, Fig. 3).

The monthly values have a strong seasonal component (i.e.
vegetation ‘greening’ in summer and ‘browning’ in winter). To
identify and remove the seasonal variation, we applied the
seasonal decomposition of time series by loess (STL) proce-
dure (Cleveland et al. 1990). The STL procedure uses the
loess smoother and separates time series into seasonal, trend,
and remainder components. The “de-trended” data shows the
smoothed trend over time after removing seasonal and
remainder components (example output: red line, Fig. 3).

Next we identified breakpoints in the time series using
the breaks for additive season and trend (BFAST) package

in R (Verbesselt et al. 2010). BFAST general model is of the
following form:

Yt¼TtþStþet ðt¼1; ¼ ; nÞ;

where Yt is the data at time t, Tt is the trend component,
St is the seasonal component, et is the remainder component
(noise), and n is the number of observed values. The trend
component Tt is fitted as piecewise linear model and the
seasonal component is fitted as a harmonic model. In this
study, the seasonal component (St) had already been
removed by STL so St was set to zero.

BFAST iteratively identifies abrupt breaks in the time
series from the slope and intercept of the segments of the
piecewise linear model shown in Tt. Figure 4 shows an
example of de-trended NDVI and the fitted piecewise linear
model (Tt). The dotted lines show the breaks identified by
BFAST, creating a temporal segmentation of each time
series. For each linear segment in Tt, we can identify the
starting digital number (DN), ending DN, and change in
DN. In the next step this information is used to estimate
impoundment creation and removal.

Estimating impoundment dates

Impoundments have a fairly predictable lifecycle. When an
impoundment is created, vegetation is cleared and then the
impoundment is lined with plastic and filled with water. The
impoundment may then be filled and emptied of wastewater
many times. When an impoundment is removed, first the
liquid is emptied and liner removed. Finally, the surface is
bulldozed and re-seeded. Using an expert knowledge
approach similar to Pouliot and Latifovic (2016), a ruleset
was developed to classify four main stages in impoundment
lifecycle (Table 1). Each of these four stages is associated
with rapid spectral changes that BFAST identifies as
breakpoints. The rulesets use the magnitude and duration of
change in NDVI and NIR to distinguish the stages. NDVI
easily distinguishes vegetation from water, and thus is
used for identifying the early stages of an impoundment
(Table 1). NIR best distinguishes water from bare ground

Fig. 3 NDVI for a single impoundment point, showing both monthly
interpolation and de-trended (seasonal effects removed)

Fig. 2 Overview of data
processing
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and is thus used for identifying the later stages of an
impoundment (Table 1).

There is no precise definition for the date of the creation
and removal of impoundments. Therefore, we defined the
‘creation’ of an impoundment as the time right before the
impoundment is lined/filled with liquid (4/5 the distance
between stages 1 and 2). Similarly we defined the ‘removal’
of the impoundment as right after it is emptied for the last
time (1/5 the distance between stages 3 and 4). These dis-
tances optimize the accuracy of the classification, as
described in the next section. Using these classification
rules, the model estimated a creation date. The model also
determined whether the impoundment had been removed
and if so estimated a removal date. Figure 5 shows an
impoundment point with both a creation and removal date.

Data Analysis

Using the impoundment creation dates, we evaluated the
number of new impoundments built each year

disaggregated by the size of the impoundment. We defined
“large” impoundments as impoundments that are 0.5 ha or
greater in size, and “small” impoundments as ones smaller
than 0.5 ha.

From the creation and removal dates, we created a fre-
quency distribution of the number of impoundments over
time. This was compared to the hectares of impoundments
and the number of active wellpads in the Pennsylvania
Unconventional Natural Gas Wells dataset (Whitacre and
Slyder 2015). We defined an active wellpad as the centroid
of a cluster of unconventional wells within 50 m of each
other with at least one active well in a particular year.

In addition, we calculated descriptive statistics for the
following:

● % removed: The percentage of impoundments that have
been removed as of December 2016.

● Duration removed: The average duration (in years) of
removed impoundments.

● Duration persistent: The average duration (in years) of
persistent impoundments as of December 2016.

Fig. 4 NDVI for a single
impoundment point, showing
both de-trended and piecewise
linear model. Vertical dotted
lines show the breaks identified
by breaks for additive season
and trend (BFAST) algorithm

Table 1 Ruleset for identifying stages in impoundment lifecycle

Stage Description Ruleset

1 Vegetation cleared Date of break that starts the largest decline in NDVI in the time series. NDVI must decline below
0.45.

2 Impoundment lined/filled with liquid Date of break that ends the decline in NDVI described in stage 1. Once impoundments are
created, they are often repeatedly filled and emptied of wastewater.

3 Impoundment emptied/liner removed Date of break that starts the largest increase in NIR in the time series. The increase in NIR must
take place after stage 2 and must rise above .25.

4 Impoundment area bulldozed and
reseeded

Date of trend break that ends the increase in NIR described in stage 3.
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We evaluated whether the size of the impoundment is
correlated with the year built, % removed, and duration
removed. We also evaluated the correlation between the
year built and duration removed.

Accuracy assessment

To assess the validity of the analysis, we compared the trend
analysis-derived dates to date intervals derived from pho-
tointerpretation for all 314 impoundment points in landsat
path/row 16/31. For each point there were between five and
eight historical images available in Google Earth, most
commonly the years 2005, 2008, 2009, 2010, 2012, 2013,
2014, 2015, and 2016. The image analyst classified the
points for each available image in one of five land classes
(H herbaceous, T trees, L impoundment with liquid, E
empty impoundment, B bare). Figure 5 gives an example
for a single impoundment point.

The process was repeated by a second image analyst. If
the two image analysts disagreed, a third analyst made the
final decision about the class. Land cover classes were then
consolidated into two classes:

● ‘impoundment absent’—classified as herbaceous (H),
trees (T), or bare (B).

● ‘impoundment present’—classified as impoundment
with liquid (L) or empty impoundment (E).

For each impoundment, two intervals were defined:
‘creation range’ and ‘removal range’. The creation interval
range for a point is the span of time between the first
‘impoundment present’ image and the previous ‘impound-
ment absent’ image. The removal range for a point is the
span of time between the last ‘impoundment present’ image
and the first ‘impoundment absent’ image. The trend
analysis-derived dates of creation/removal were compared
to the creation and removal ranges. If the modeled dates fell

5/27/2008 
Herbaceous (H) 

5/9/2010 
Impoundment with 
liquid (L) 

5/5/2013
Bare (B) 

9/24/2016 
Herbaceous (H) 

Fig. 5 Modeled impoundment
creation and removal. Solid
vertical lines represent the dates
at which an impoundment is
estimated to be created and
removed. Dashed vertical lines
represent the dates for which
imagery is available on Google
Earth (images shown at the top
of the figure). The blue letter
represents the class as
determined by an image analyst
(H herbaceous, T trees, L
impoundment with liquid, E
empty impoundment, B bare)
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within the creation and removal ranges, the date estimate
was considered valid.

Using this strategy for all 314 impoundment dates, we
calculated the percentage of creation and removal dates that
were valid for both large and small impoundments. In
addition, we conducted a χ2-test to evaluate whether
impoundment removal was significantly different between
the trend analysis-derived dates and photointerpretation-
derived dates. Finally, we conducted a paired t-test to
evaluate whether duration removed and duration persistent
were significantly different between the trend analysis-
derived dates and photointerpretation-derived dates.

Results

Accuracy Assessment

We found that overall 82% of creation dates and 71% of
removal dates were valid (i.e. they fell within the creation
and removal range, Table 2). However, the accuracy varied
substantially by the size of the impoundment. Large
impoundments had a higher proportion of valid estimates,
especially for removal date (93% valid). In a few cases,
errors were caused when impoundments were removed but
not yet re-seeded by the end of the time series, making them
spectrally similar to empty impoundments that are still in
use. In contrast, removal dates for small impoundments
were only 53% valid. This may be due to the mixed pixel
problem; within a single Landsat pixel, small pits or
impoundments can be mixed with surrounding land covers.
When pixels are mixed, the temporal signal of the
impoundment may become indistinct. It is also common
that small on-site pits and impoundments share a cleared
area with wells; even when the impoundment has been
removed the wellpad may remain.

The accuracy of the estimated creation date varied much
less by size of impoundment (79% valid for small
impoundments vs. 85% for large). This may be because the
clearing of vegetated land to create impoundments is typi-
cally a clear and spectrally distinctive event that covers a
large area. One source of error is that, in a small number of
cases, impoundments were built in locations that had been

previously cleared for other purposes, so no ‘break’ was
recorded in the time series.

The χ2-test indicated that there is a significant difference
between the number of impoundments predicted to be
removed by the trend analysis vs. photointerpretation (χ2=
145, p= 0.000). Most of the time (84%) the model correctly
predicts whether or not an impoundment has been removed
(Table 3). This varies somewhat by size; 91% of “large”
impoundments are correctly predicted, while 78% of “small”
impoundments are correctly predicted. The most common
error is when the model indicates removal when photo-
interpretation indicates the impoundment is persistent
(Table 3).

It is notable that for small impoundments the model is
relatively accurate in predicting if the impoundment is
removed (78% accurate) but poor at predicting a valid date
(53% accurate). It may be that the impoundments and the
surrounding area are spectrally heterogeneous late in the
lifecycle of the impoundment (i.e. there are many spikes in
NIR, and it is not always clear, which is indicative of the
removal of the impoundment).

We compared duration removed and duration persistent
for the 84% of impoundments for which there is agreement
about whether the impoundment has been removed. The
paired T-test revealed no significant difference in duration
removed (p= 0.082) and duration persistent (p= 0.269)
between the trend analysis and photointerpretation-derived
dates (Table 4). We also compared duration for all
impoundments. The paired T-test revealed a significant
difference (p= 0.006), with the trend analysis predicting a
slightly longer duration than photointerpretation. This
indicates that errors in duration are likely associated with
whether the impoundment is predicted to be removed.

Table 2 Accuracy assessment,
validation subset

All Impoundments Large Impoundments
(≥0.5 ha)

Small impoundment
(<0.5 ha)

Creation Removal Creation Removal Creation Removal

# Valid 247 215 115 126 132 89

# Not valid 56 88 21 10 35 78

% Valid 82 71 85 93 79 53

Table 3 Confusion matrix of impoundment state in validation subset

Photointerpretation

Persistent Removed User’s
accuracy (%)

Trend
analysis

Persistent 131 13 91

Removed 35 124 78

Producer’s
accuracy (%)

79 91 84
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Findings

Based on the analysis of all 1221 impoundments, we found
that 76% of impoundments were removed during the
2005–2016 timeframe. The duration of persistent
impoundments was 5.2 years at the end of 2016, while the
duration of removed impoundments was 2.4 years (Table
5). We found that there is wide variability in the duration of
impoundments, with some impoundments estimated to exist
for less than a year and others over 9 years.

We found that there is a significant but small correlation
between the size of impoundments (natural log) and the
duration of removed impoundments (R= 0.133, Sig= 0.00,
N= 916). There is also a significant but small correlation
between year built and duration of removed impoundments
(R=−0.118, Sig= 0.00, N= 916). In contrast, there is a
significant and larger correlation between the size of
impoundment and the year built (R= 0.469, Sig= 0.00, N
= 1191). The more recently built impoundments tend to be
larger (Fig. 6). Furthermore, 90% of small impoundments
have been removed, but only 40% of large impoundments
have been removed. These findings reflects the fact that
though large impoundments tend to have a similar duration
to small impoundments, they also tend to be more recently
built.

Finally, we found that the total number of impoundments
increased rapidly from 2006 to 2010 and then plateaued
from 2010 to 2013 (Fig. 7). In contrast, the total area of
impoundments increased all the way through 2013,
reflecting the fact that recent impoundments are getting

larger in size. In 2010, where lines cross in Fig. 7, the
average area of impoundments reached one acre. For
reference, active wellpads increased rapidly to 2011 and
growth slowed through 2013 (Fig. 7).

Table 4 Paired T-test of
duration of impoundments,
validation subset

Duration—All Duration—Removed
impoundments

Duration—Persistent
impoundments as of December
2016

Trend analysis Mean 4.54 3.1 5.6

SD 2.1 1.8 1.4

Photointerpretation Mean 4.2 2.8 5.8

SD 1.9 1.1 1.5

Paired T-test T 2.796 1.752 −1.111

DF 295 130 121

Sig 0.006 0.082 0.269

Table 5 Summary statistics, duration of impoundments

Duration—Removed
impoundments

Duration—Persistent
impoundments as of December
2016

Mean 2.4 5.2

SD 1.6 1.3

Max 8.2 9.2

Min 0.4 2.1

Fig. 6 Number of new impoundments built by year
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(predicted by trend analysis), and impoundment area over time
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Discussion

There are several illuminating trends in the number and size
of impoundments over time. From 2006 to 2010 the total
number of built impoundments increased rapidly. From
2010 to 2013 the number of built impoundments slowed to
the point that it equaled removed impoundments, leading to
a fairly constant number of impoundments. Since new built
impoundments tend to be larger than the older removed
impoundments, the total impoundment area continued to
rise through 2013. The increase in the area of impound-
ments roughly mirrored the total number of active wells
through 2013. From 2013 to 2016, the number of active
wells declined slightly. Since we do not yet know the
locations of impoundments created after 2013, we do not
know if the total number of impoundment or impoundment
area has also declined post-2013.

The duration of individual impoundments is short,
averaging 2.4 years for removed impoundments from 2005
to 2016. Duration is also highly variable, with some
impoundments existing for less than a year, and others
lasting 8 or more years. Duration appears not to be changing
over time, as it is minimally correlated to impoundment size
or the year built. Knowing the locations and dates of
impoundments can be useful for epidemiological studies.
However, because impoundments are spatially and tem-
porarily correlated with wells, may be difficult to distin-
guish the health effects of impoundments from other
fracking-related activities.

We found that the trend analysis yielded a high level of
accuracy for estimating impoundment creation and removal.
In addition, the trend analysis estimates of duration are
similar to photointerpretation estimates. That said, there
were two major sources of error. The first major source of
error relates to impoundment size. We found that
impoundments with valid removal dates were 218% larger
on average than impoundments with invalid removal dates
(0.8 vs. 0.25 ha), suggesting that it is easier for the model to
identify removal dates of large impoundments. In Penn-
sylvania the centralized storage pits must be double-lined
with plastic, while smaller on-site ponds do have no such
requirements. This difference in requirements may be one
reason why there is a more obvious spectral shift when
larger impoundments are removed.

The second major cause of error relates to impoundments
that do not follow the usual temporal sequence. We
observed several (uncommon) examples of non-standard
sequences in the validation subset, including:

● The impoundment was created on land that was
previously cleared of vegetation for other purposes.

● The construction of the impoundment was discontinuous
—weeds or vegetation grew in the middle of the sequence.

● Impoundment was renovated in the middle of the time
series (e.g. emptied, liner removed, liner replaced, and
then refilled).

● Impoundments were removed but not yet re-seeded by
the end of the time series.

● Algae or other photosynthetic vegetation grew on the
impoundment before it was removed.

With new regulations expected to take effect, there is
reason to believe that the accuracy of the trend analyses will
improve. The regulations will ban small on-site waste sto-
rage pits for unconventional well sites (Pennsylvania
Department of Environmental Protection 2016). Centralized
impoundments would still be permitted, but drillers will
need to apply for a residual waste permit. As we have seen,
the removal dates of the larger, centralized impoundments
are more likely to be valid. Also, the new regulations will
introduce standards for building and removing impound-
ments, wastewater processing, site restoration, and reme-
diating spills (Pennsylvania Department of Environmental
Protection 2016). The building and removal standards may
reduce the number of impoundments that follow an atypical
temporal sequence.

The trend analysis described in this study has good
accuracy and yields important insights, but there is room for
further methodological refinement. One promising strategy
is the continuous change detection and classification
(CCDC) algorithm, which looks at all available Landsat
imagery and only flags a pixel as “changed” if it is different
from the predicted pixel value for three consecutive images
(Zhu and Woodcock 2014). The CCDC algorithm is
adaptable to a wide range of land covers, and could
potentially be tuned to specific features like impoundments.
Another promising strategy is to combine trend analysis
with geographic object-based image analysis (GEOBIA),
which segments images into objects, and then classifies
objects based on spectral, textural, geometric, and con-
textual information. A study of industrial disturbances in
Alberta Canada used GEOBIA to calculate vegetation
condition in objects adjacent to disturbances, which was
then used to distinguish oil and gas disturbances from other
spectrally similar disturbances (Powers et al. 2015). Com-
bining GEOBIA and trend analysis would allow researchers
to classify spatiotemporal segments based on both temporal
context (i.e. the approach of this study, as well as Pouliot
and Latifovic 2016) and spatial context (i.e. the approach of
Powers et al. 2016). Due to computational limitations, few
studies combine GEOBIA and trend analysis, but it remains
an important avenue of future research (Platt et al. 2016).
Finally, trend analysis could be used for continuous mon-
itoring of impoundments (Verbesselt et al. 2012), where
image analysts can be sent images for photointerpretation
only after a break in the time series near an impoundment
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location has been identified. These methods could be
applied to a variety of ephemeral land use changes asso-
ciated with oil and gas infrastructures or other industrial
development.
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