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Abstract

In this study we tested whether AVIRIS data allowed for im-
proved land use classification over synthetic Landsat ETM+
data for a location on the urban-rural fringe of Colorado. After
processing the AVIRIS image and creating a synthetic Landsat
image, we used standard classification and post-classification
procedures to compare the data sources for land use mapping.
We found that, for this location, AVIRIS holds modest, but real,
advantages over Landsat for the classification of heteroge-
neous and vegetated land uses. Furthermore, this advantage
comes almost entirely from the large number of sensor spec-
tral bands rather than the high Signal-to-Noise Ratio (SNR).

Introduction
In rapidly urbanizing areas, such as the Front Range of Col-
orado, maps fast lose their validity. Large areas of prairie or
farmland land can be overrun by residential development in a
matter of months. Remotely sensed data allows land use and
land cover to be mapped quickly, relatively cheaply, and fre-
quently. With improved mapping of rapidly changing areas,
planners will be able to better address issues associated with
urban sprawl. However, the choice of sensor can significantly
influence the accuracy of the classification. While it is com-
monly thought that smaller Ground Sampling Distance (GSD),
also called pixel size, is the key to better land use classifica-
tion, the number of spectral bands and the Signal-to-Noise
Ratio (SNR) may influence classification accuracy as well.
Commonly, researchers use sensors such as those on
Landsat or spOT satellites for mapping land use and land cover
(Table 1). Of these, the Landsat sensors have more spectral
bands and a longer time series, while SPOT provides smaller
GSD. Less traditional sensors may provide additional informa-
tion that can improve mapping accuracy. The Airborne Visible
Infrared Imaging Spectrometer (AVIRIS), for example, produces
images with 224 spectral bands between 0.4 and 2.45 pm,
compared to six bands for Landsat (not including the thermal
band) and three for SPOT’s Multispectral Imager (XS). Sensors
with a large number of continuous spectral bands, such as
AVIRIS, are called hyperspectral imagers (Green et al., 1998).
Though hyperspectral imagers have been used in studies
of mineralogical mapping and ecology, they have rarely been
employed for land use mapping. A small number of studies
have explored the integration of hyperspectral and Synthetic
Aperture Radar (SAR) for urban mapping (Gamba and Housh-
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mand, 2001; Hepner et al., 1998). Other studies have used
hyperspectral imagery to map a narrow range of urban materi-
als and processes (Ben-Dor et al., 2001; Ridd et al., 1992; Salu,
1995). One study used an iterative spectral un-mixing proce-
dure to delineate urban materials (Roessner et al., 2001). To
date, however, no studies have tested whether hyperspectral
imagery improves land use classification accuracy over and
above multispectral imagery such as from Landsat.

In this study, we tested whether AVIRIS data allowed for
improved land use classification over synthetic Landsat ETM+
data for a location on the urban-rural fringe of Colorado. We
expected that the large number of bands and high SNR pro-
vided by AVIRIS would help distinguish land cover types that
are easily confused (irrigated urban areas and irrigated crops,
for example). After processing the AVIRIS image and creating a
synthetic Landsat image, we used standard classification and
post-classification procedures to compare the data sources for
land use mapping.

Sensor Specifications and Classification Accuracy: The Case
of the Urban Fringe

Among the factors that may influence classification accuracy

are the Ground Sampling Distance (GSD), number of spectral
bands, and Signal-to-Noise Ratio (SNR) of a sensor. Generally, it
is thought that GSD is the most important factor for classification
accuracy of built environments (Forster, 1985). For example, a
study in Indonesia found that SPOT Multispectral (Xs) images are
superior to Landsat Multispectral Scanner (MSs) images for
mapping of heterogeneous, near-urban land cover because of
SPOT’s smaller pixel size (Gastellu-Etchegorry, 1990). The link
between GSD and classification accuracy, however, is sometimes
tenuous. In heterogeneous areas, such as residential areas, it has
been shown that classification accuracies may actually improve
by up to 20 percent as GSD is increased (Cushnie, 1987). This oc-
curs when the reflectance spectra of a variety of cover types in
an urban environment blend to form an overall urban signal that
can be easily distinguished from other land covers.

SNR, which varies sensor-by-sensor and band-by-band and
pixel-by-pixel, may also influence classification accuracy. The
greater the SNR, the more usable information is available in
the data. Overall, AVIRIS has much higher SNR than Landsat
sensors. Within the Landsat family, the ETM+ in Landsat 7 has
a higher SNR than the Thematic Mapper (T™M) in Landsat 4 and
5. SNR may vary depending not only on sensor characteristics
but also on the signal strength; summer images will have a
higher SNR than winter images for the same time and place.
While the advantages of high SNR are well documented in do-
mains such as mineralogical mapping (Chabrillat et al., 2002;
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TABLE 1. SENSOR CHARACTERISTICS

Landsat
AVIRIS TM/ETM+ SPOT XS
Platform Airborne  Spaceborne  Spaceborne
Ground Sampling Distance 20 m 30m 20 m
Number of Bands 224 6 3
(excluding thermal)
Signal-to-Noise Ratio High Moderate Moderate
Launch 1987 1982 1986

Smailbegovic et al., 2000), they have not been thoroughly as-
sessed for land use mapping. It is likely that the influence of
SNR on classification accuracy depends heavily on the classes
of interest. For example, distinguishing irrigated urban land
from irrigated cropland may require a higher SNR than would
be needed to distinguish spectrally disparate land uses such
as residential land and fallow land.

Finally, the number of spectral bands may influence accu-
racy of land use classification. One study showed the benefits
of increasing the number of bands in classification of the
urban fringe. The study used SPOT Xs data to map farmland
and urban land uses in New Zealand (Gao and Skillcorn,
1998). In this case, using multispectral imagery improved the
delineation of urban areas and farmland because vegetative
land covers were easier to discriminate with a near-infrared

band. In cases where different land uses have similar but sep-
arable spectra, increasing the number of spectral bands will
likely improve mapping accuracy. When land uses are either
spectrally inseparable or clearly distinct, however, additional
bands may not improve classification accuracy. In these cases
the extra bands could add noise and spectral heterogeneity,
resulting in lower classification accuracy.

These studies show that decreasing GDR, increasing SNR,
and increasing the number of bands may improve classifica-
tion accuracy for land use mapping, but the net benefits often
depend on the particular scene and classification system. In
this study AVIRIS data was compared with synthetic Landsat
ETM+, fixed at 20 meter spatial resolution to determine the
possible effects of increased number of bands and higher SNR
for land use mapping at the urban fringe in Colorado.

Image Processing

An AVIRIS flight line was acquired for 30 September 1999
along the northern Front Range of Colorado. A single image
cube was extracted that encompassed much of Fort Collins
along with the surrounding agricultural land and Horsetooth
Reservoir (Figure 1).

In order to convert at-sensor radiance into surface re-
flectance, an atmospheric correction was performed with
High-Accuracy Atmosphere Correction for Hyperspectral Data
(HATCH). Using spectral features within the data, HATCH creates
pixel-by-pixel estimates of atmospheric composition. HATCH

Figure 1. Synthetic Landsat ETM+ Band 3 image of Fort Collins and surroundings.
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takes advantage of recent advancements in atmospheric radia-
tive transfer, resulting in highly accurate atmospheric correc-
tions (Qu et al., 2000; Qu et al., 2002). After conducting the
atmospheric correction, bands in the major water absorption
features at 1.4 wm and 1.9 pm were removed.

In this study, an AVIRIS image was compared to synthetic
Landsat ETM+ image derived from AVIRIS. This method elimi-
nated several sources of error that would be present if a real
Landsat image were used. First, AVIRIS images from 1999 and
earlier contain unsystematic distortions introduced by the
pitch, yaw, and roll of the aircraft (currently a three-axis gyro-
scope is attached to the sensor and records these movements
so that the distortions may later be removed from the images).
As a result, some AVIRIS images may be difficult to register to
other images with high precision. Secondly, the GSD of AVIRIS
(20 meters) is finer than that of Landsat (30 meters), necessi-
tating a resampling procedure that would degrade and possi-
bly introduce additional distortions to the image. Finally, the
two images would be recorded at different times of the day, on
different days, with different atmospheric conditions that
would need to be corrected. Though it is likely that the cumu-
lative effects of these differences would be small, they would
no doubt introduce errors into the comparison.

A solution to all of these issues was to create an image
from AVIRIS that closely matches the output of Landsat ET™M+.
This was done with a two-step process. In the first step, the
appropriate AVIRIS bands were combined to approximate the
following Landsat bands:

Band 1: 0.45-0.52 pm
Band 2: 0.52—0.60 pm
Band 3: 0.63—0.69 pm
Band 4: 0.76—0.90 pm
Band 5: 1.55-1.75 pm
Band 7: 2.08-2.35 pm

blue)

green)

red)

near infrared)

short wave infrared)
short wave infrared)

To create each synthetic ETM+ band, 7 to 27 AVIRIS bands
were combined. Since each detector is most sensitive to the
wavelength at the center of the sensor bandwidth, the AVIRIS
bands that fell in the middle of a Landsat band were weighted
more than those that fell toward the edge of the band, accord-
ing to the Landsat ET™M+ filter response function. Before pro-
ceeding, the dynamic range of the synthetic Landsat images
was degraded from 12 bits to 8 bits to approximate ETM+.

In the second step, the SNR of the synthetic ETM+ image
was degraded to approximate the SNR present in actual ETM+. In
1999, when the image was taken, AVIRIS bands had an SNR as
high as approximately 1000 (figures from Robert O. Green, Jet
Propulsion Laboratory, personal communication). Since noise
is inversely proportional to the square root of the number of
bands, the synthetic ETM+ has even lower noise than actual
AVIRIS data and is approximately 28 to 37 times greater per band
than that of ETM+ (Table 2). As a result, AVIRIS may outperform
ETM+ even if spatial and spectral resolution were equalized.

TABLE 2. SIGNAL TO NOISE RATIO (SNR) OF SYNTHETIC AND TRUE LANDSAT ETM+

Average

SNR for

AVIRIS

bands in SNR of Estimated Ratio of
ETM+ synthetic synthetic SNR of synthetic to
Band ETM+ ETM+ true ETM+ true SNR
1 912 2412 87 28
2 1033 2923 96 31
3 982 2778 75 37
4 821 3178 147 22
5 584 2611 102 26
7 377 1958 67 29

To estimate the noise levels of ETM+, the following model
was used (John Barker, NASA/Goddard Space Flight Center,
personal communication):

SNR = DN/(a + b = DN)A.5, (1)

where DN is the digital number of a pixel, and a and b are
coefficients for each band calibrated on ETM+ data from 06 Sep-
tember 2002. The model produced estimated per-pixel ETM+
SNR (scene averages shown in Table 2). Dividing the DNs by
the estimated SNR produced an estimated noise level for each
pixel. Gaussian noise images were then created with a stan-
dard deviation equal to this noise level (over and above that of
AVIRIS) for each pixel of each band. These noise images were
added to each synthetic ETM+ band to approximate the noise in
the actual ETM+ sensors. The resulting synthetic ETM+ images
very closely approximated the bands and SNR of actual Landsat
ETM+, only with a GSD of 20 meters instead of 30 meters.

After creating the synthetic Landsat image, a Maximum
Noise Fraction (MNF) transform was performed on the AVIRIS
cube and synthetic Landsat images to reduce processing time
and noise, (Green et al., 1988. Note: MNF is referred to as
“Minimum Noise Fraction” in Environment for Visualizing
Images (ENVI) image processing software). A MNF transform,
similar to a principal components transform, derives a series
of uncorrelated bands and segregates noise in the data. Unlike
a principal components transform, a MNF transform equalizes
the noise across bands so that image data with variance lower
than noise is not hidden in higher bands. All MNF bands with
an eigenvalue of less than two were eliminated since these
bands contain mostly noise. The number of remaining bands
equals the dimensionality of the image. In this case, the syn-
thetic ETM+ data had a dimensionality of five, and the AVIRIS
data had a dimensionality of 30. All subsequent analysis was
conducted on these two data sets.

Figures 2 and 3 show the band loadings for MNF bands 1
to 5 and 16 to 30. There are 210 AVIRIS bands between 0.4 and
2.5 wm. The first few MNF bands (Figure 2) show loadings that
peak in the atmospheric windows and are not single-wave-
length specific. In fact, the peak loadings fall approximately in
line with the Landsat bands. On the other hand, in the higher
MNF bands (Figure 3) the loadings are much more wavelength
specific as evidenced by the sharp changes throughout the
spectrum. Some of these significant loadings are associated
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Figure 2. Band loadings for MNF 1-5. Note that peak load-
ings of the AVIRIS data roughly correspond to Landsat
bands.
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Figure 3. Band loadings for MNF 16-30. Loadings for
these bands come largely from (1) wavelength-specific fea-
tures that have not been entirely removed by the atmo-
spheric model and (2) from bare soil and plant litter
(2.2-2.35 pm).

with the water vapor absorption bands at 0.94 and 1.14 pm,
and the CO, features around 2.1 wm. These features are not
completely removed by the atmospheric model, and hence in-
duce low-amplitude variability in the data that it is mani-
fested in the statistics of the image. Loadings around 2.2 to
2.35 pm are most likely associated with bare soil and plant lit-
ter.

Classification Methodology

There are myriad classification methods, each with different
properties. Unsupervised classification automatically sepa-
rates land use into a number of computer-defined categories.
Supervised classification assigns each pixel to a class by
matching its spectrum to that of a defined class. Linear spec-
tral mixing derives pixel-by-pixel measures of abundance for
spectrally pure materials.

This study used a variety of supervised classification al-
gorithms but focused on a single one: the Maximum Likeli-
hood (ML) classifier. ML is a widely accepted classification
method because of its robustness and simplicity. The classifier
determines the probability that a pixel belongs to each class
and then assigns the pixel to the class with the highest proba-
bility (Richards, 1999). It assumes that the spectrum of each
class is normally distributed and requires that the class be de-
fined by a minimum n + 1 training pixels for n spectral bands.

Using ENVI, images were classified into eight classes with
the ML classifier. The classification system was a modification
of Anderson Level II (Anderson et al., 1976) and used training
samples from the following land use categories: residential,
commercial/industrial, water, irrigated cropland, fallow, dry
rangeland, grassland, and irrigated urban. Training samples
with a minimum of 300 pixels were defined using the interi-
ors of relatively homogenous features in each land use class.
The spectra of these training samples (also called ROIs or Re-
gions Of Interest) show that these land use classes are, on av-
erage, spectrally separable (Figures 4 and 5). Many, however,
have some characteristics of vegetation since all land use
classes contain some vegetation.

To assess classification accuracy, the supervised classifica-
tions were then compared to a ground truth image. The ground
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Figure 4. Spectra of training samples for fallow, grass-
land, irrigated agriculture and dry rangeland.
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Figure 5. Spectra of training samples for irrigated urban,
residential, industrial/commercial and water.

truth image was created with a hand classification of a USGS
Digital Orthophoto Quarter Quad (DOQQ) taken on 04 October
1999, five days after the AvIRiS flight. Site visits, information
from the National Land Cover Data set (NLCD) (Vogelmann

et al., 1998), and several bands of the AVIRIS data itself were
used in the hand classification process when the land use was
not clear from the DOQQ alone. The ground truth image was
geometrically registered to the AVIRIS image using a 1-degree
polynomial and bilinear resampling with 20 ground control
points. The rectification had a RMSE of 0.45.

Results

Accuracy of a supervised classification of land use typically
ranges between 60 percent—90 percent depending on the clas-
sification scheme, the classifier, and the image itself. Ancillary
data, textural data, or post-classification rules may further in-
crease the classification accuracy. These were not used in this
study, however, since the goal was not to maximize classifica-
tion accuracy, but to compare the performance of different
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image types with a commonly accepted classification proce-
dure.

Visually, the two classifications produced similar results,
though the AVIRIS classification appears to have smoother
edges and fewer isolated pixels. The accuracy assessment ver-
ified that the AVIRIS classification was superior to that of the
synthetic ETM+ image. This remained true with all four classi-
fiers tested, though classification accuracy varied widely. Im-
portantly, the results of the synthetic ETM+ classification were
virtually identical to a similar classification of ETM+ without
added noise. This indicates that the difference in noise be-
tween AVIRIS and ETM+ is not enough to strongly influence
classification accuracy in this scene. Henceforth, only results
for synthetic ETM+ with added noise will be reported.

The ML classifier produced the highest classification accu-
racies for both AVIRIS and synthetic Landsat, and the differ-
ence between the two was the smallest (Table 3). Using ML,
classification of AVIRIS improved 5 percent over synthetic
Landsat, while the Kappa coefficient (which compensates for
correct classification by chance) increased from .59 to .65. A
pair-wise comparison of the kappa statistics (Rogan et al.,
2002; Congalton and Green, 1998) for the two classifications
shows that these results are significantly different from each
other with a z-value of 78.32. A z-value of 1.96 or higher indi-
cates that two kappa values are significantly different at the
95 percent confidence level.

TABLE 3. ACCURACY OF SUPERVISED CLASSIFICATION WITH COMMON CLASSIFIERS

AVIRIS Synthetic ETM+ Difference

Accuracy Kappa Accuracy Kappa Accuracy Kappa

Accuracy assessment at the class level was conducted
with an unstratified random sample of 28,058 pixels (10 per-
cent of the image). It showed that changes in classification
accuracy varied widely between classes (Table 4). Producer’s
accuracy measures the chance that a pixel is classified as x
given that the ground truth indicates that it is x. It is sensitive
to errors of omission. User’s accuracy describes the chance
that the ground truth image indicates that it is x given that it
has been classified as x. It is sensitive to errors of commission.

Using the AVIRIS image, the producer accuracy improved
in five of eight classes but decreased for the other three.
Builtup areas (residential and commercial/industrial) both im-
proved by 11 percentage points, while urban irrigated areas
improved by seven. At the same time, the classification accu-
racy of fallow decreased by 11 and dry rangeland decreased
by five. For these land covers, the classification using AVIRIS
failed more often to identify the classes. Because a large por-
tion of the image is composed of the classes that improved,
however, AVIRIS led to an improvement in overall classifica-
tion accuracy.

User’s accuracy benefited much more from AVIRIS than
did producer’s accuracy. Of the eight classes, four strongly
benefited from AVIRIS; fallow improved by 58 percentage
points, while irrigated improved by 37, dry rangeland by 18
and urban irrigation by 17. Only commercial/industrial sub-
stantially decreased (—9 percent) in user’s accuracy using
AVIRIS. This indicated that there were fewer false positives
from these vegetation and soil-based classes but more false
positives for commercial areas.

The change in the confusion matrix reveals important de-
tails of the different classification accuracy of AVIRIS and syn-
thetic ETM+ (Table 5). Along the diagonal, numbers indicate
the change in classification accuracy by class for AVIRIS over

Parallelpiped 35 0.25 30 0.19 5 0.06  synthetic Landsat. On the off-diagonal, numbers show the
Minimum 72 0.64 64 0.54 8 0.10  change in misclassification; a negative number indicates that
Distance the classification does not confuse these classes as often with
M%%igﬁggls 69 0.61 53 0.43 17 018 Aviris data. Reading from top to bottom, one can assess where
Maximum 73 0.65 68 0.59 5 0o Classification accuracy 1ncreasec_1 and where it dt?c'reased using
- AVIRIS data. Overall, AVIRIS data improved the ability to distin-
Likelihood . X g . X -
guish several easily confused classes including residential
TABLE 4. ACCURACY OF MAXIMUM LIKELIHOOD CLASSIFICATION BY CLASS
Producer Accuracy User Accuracy
Sample Size AVIRIS ETM+ Change AVIRIS ETM+ Change
Residential 10032 82 71 11 74 75 -1
Dry Rangeland 4831 71 75 -5 92 75 18
Irrigated Urban 744 63 56 7 49 33 17
Fallow 624 66 77 —-11 87 29 58
Grassland 6384 59 55 4 70 65 5
Com/Industrial 3115 71 60 11 49 59 -9
Water 2108 87 91 —4 100 99 0
Irrigated Cropland 221 72 68 4 73 36 37
TABLE 5. CHANGE IN CLASSIFICATION ACCURACY BY CLASS (AVIRIS OVER SYNTHETIC ETM+)
Synthetic ETM+— Dry Urban Com/ Irrigated
AVIRIS 1 Residential Rangeland Irrigation Fallow Grassland Indust Water Crops
Residential 11 0 6 2 10 -3 -3 7
Dry Rangeland -3 -5 -1 -3 -8 -4 -1 -1
Urban Irrigation -2 0 7 0 -2 0 1 -6
Fallow —2 -7 -1 —11 -7 —4 0 0
Grassland —4 3 -5 1 4 0 0 —4
Com/Industrial 0 9 2 11 5 11 8 1
Water 0 0 0 0 0 0 —4 0
Irrigated Crops -1 0 -8 0 -1 0 0 4
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versus vegetated land uses; commercial/industrial versus fal-
low, dry rangeland, and residential; and, urban irrigation ver-
sus irrigated crops and grassland.

The net improvement did not take place in all categories,
however. Using AVIRIS, the classification accuracy of fallow
decreased due to increased confusion with commercial/indus-
trial. Dry rangeland was also more likely to be confused with
commercial/industrial, though less likely to be confused with
fallow.

Discussion

The classified images contained similar types of misclassifica-
tions, often due to the well-identified problem of heterogeneity
in urban land covers (Forster, 1985). Residential areas were
sometimes confused with vegetated land uses because both
have mixtures of soil and vegetation. Similarly, commercial/
industrial areas were sometimes confused with fallow and dry
rangeland because all of these land uses may contain highly
reflective exposed ground. Water was misclassified in places
because differences in chlorophyll content, depth and turbid-
ity sometimes gives it similar spectral characteristics to other
classes. Urban irrigation was confused with irrigated crops
and grassland because all have leafy plants high in chlorophyll
that reflect strongly in the infrared. Since there are often many-
to-one or one-to-many relationships between a spectrum and
land use, these errors are common under almost any classifica-
tion system or sensor. However, beneath the similarities, there
were important differences between the classifications.

Overall, the results support the hypothesis that AVIRIS data
contained information over and above synthetic Landsat that
helped to improve classification accuracy for land use in this
scene. This additional information may have come from areas
of the spectrum captured only by AVIRIS (e.g., .90 to 1.35 pm,
1.43 to 1.55 pm, and 1.95 to 2.08 wm). For example, a graph of
mean spectra for land use training samples shows that the re-
gion around 1.17 pm helps to identify urban irrigation and the
region around 1.45 pm helps to distinguish residential areas
from industrial/commercial areas (Figures 4 and 5). The addi-
tional information could also have come from the high spec-
tral resolution of AVIRIS; each synthetic Landsat band is com-
posed of a weighted average of at least seven AVIRIS bands.

In terms of producer’s accuracy, this improvement ap-
peared to be most pronounced in land use classes with a large
amount of vegetation such as residential land, urban irriga-
tion, grassland, and irrigated agriculture. The improvement in
these classes most likely occurred because the signal of vege-
tation (part of the mix for all these classes) contained some
distinction that only AVIRIS could pick up. This could be a dis-
tinct vegetation type, moisture content, stress level or other
spectral characteristic that set a given land use apart from an-
other land use. In addition, improvements in producer’s accu-
racy tended to be in spectrally heterogeneous classes such as
residential and commercial/industrial. Perhaps the classifica-
tion of the AVIRIS image was able to detect the full range of
spectral features that appeared in these classes. In addition to
changes in producer’s accuracy, the user’s accuracy improved
across most classes. The false positives decreased, in some
cases dramatically, again perhaps because subtle signatures in
the spectrum distinguished easily confused classes.

The decrease in accuracy for certain classes is more diffi-
cult to explain. For example, the producer’s accuracy for fal-
low, water, and dry rangeland decreased with AVIRIS. In these
fairly homogenous land uses, perhaps the additional bands in
AVIRIS simply added noise and provided no additional useful
information over synthetic Landsat. The decrease in user’s ac-
curacy for commercial and industrial land is also difficult to
explain. It is possible that certain spectral similarities be-
tween fallow and commercial/industrial are not evident in the
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wavelengths covered by the six synthetic Landsat bands. In
these cases, spurious similarities between the land uses
would only be detected by AVIRIS.

Conclusion

In this study, a supervised classification of AVIRIS was more
accurate than one of synthetic Landsat ETM+ for land use clas-
sification at the urban fringe. Which imagery a researcher
should use, provided both are available, largely depends on
the purpose of the study. If the goal is to accurately identify
existing built and highly vegetated land covers (important for
mapping sprawl, for example) AVIRIS holds an apparent ad-
vantage. If the objective is to minimize false positives for land
uses with a mix of soil and vegetation, AVIRIS again holds an
advantage. On the other hand, using AVIRIS produced a greater
number of false positives for commercial/industrial land and
performed poorly in classifications of relatively homogenous,
less-vegetated land uses, such as fallow and dry rangeland.

If these are the classes of greatest interest, perhaps Landsat
should be used.

Since classification accuracy is dependent on a number of
factors besides sensor specifications, caution should be used
in extending the conclusions of this study to other areas. For
example, using other classification systems such as the Food
and Agriculture Organization’s Land Cover Classification sys-
tem (LCCS) or the V-I-S system may yield different classification
accuracies for the two sensors (see Di Gregorio, 2000 and Ridd,
1995 for a description of these classification systems). Further-
more, these results may not hold for a different mix of land
covers.

A final finding of this study is that the overall advantage
of AVIRIS came not from its high SNR, but from the number of
spectral bands. This suggests that future satellites used for
land use mapping should include a sensor with a larger num-
ber of spectral bands in the 0.4 to 2.5 pm region. However,
this satellite need not have higher SNR than Landsat ETM+ for
accurate land use classification at the urban fringe.
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