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a b s t r a c t

Many spatially explicit studies of wildfire hazard focus on the wildlandeurban interface (WUI), the area
where natural vegetation intersects or mixes with structures. However, research suggests that the
characteristics of a small portion of the WUI, the home ignition zone, largely determine potential for
ignition from wildfire. The home ignition zone (HIZ) is the area that includes a structure and its sur-
roundings out to 30e60 m. The primary goal of this study is to develop metrics to characterize land
cover, burned area, and topography in the HIZ. Pre-fire metrics (i.e. related to land cover and topography)
help identify relatively hazardous individual HIZes or neighborhoods of HIZes. Post-fire metrics can be
used to assess the burned area across land cover types, inside and outside the HIZ. To calculate the HIZ
metrics, multiple data sources (e.g. high resolution 8-band multispectral imagery and LiDAR point
clouds) were integrated using an object-oriented image analysis. The setting for the study is the Fourmile
Canyon area west of Boulder, Colorado, a data-rich area which experienced a large, destructive wildfire in
September 2010. The land cover, burn area, and topography metrics were successfully and accurately
calculated and then pre-fire metrics were combined into a simple HIZ hazard index. HIZ characteristics
broadly mirror the characteristics of the WUI within the fire perimeter as a whole, though the HIZ on
average contains more bare and less forest land, has more widely spaced canopies, and experienced less
burning during the fire. The HIZ hazard index values were spatially heterogeneous, but with several
distinct high and low hazard clusters. The methods described in this study, paired with in situ data
collection, can be applied to other areas to inform hazard mitigation plans.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

As a complex human-environmental system of increasing
importance, wildfire is a natural topic of applied geographical
research, which has long focused on the physical processes, spatial
distribution, and mitigation of hazards (Montz & Tobin, 2011). The
severity and destructiveness of wildfires in the western United
States has increased in the last 20 years due to factors such as
drought, the buildup of hazardous fuels in some ecosystems, and
the decentralization of populations into fire-prone areas of thewest
and southwest (Hammer, Stewart, & Radeloff, 2009;Mell, Manzello,
Maranghides, Butry, & Rehm, 2010; National Interagency Fire
Center, 2009). In 2012, 67,774 wildland fires were reported across
the United States totaling over 3.6 million ha (National Interagency
Fire Center, 2012). In Colorado alone, 595 properties were
hotmail.com.
destroyed in two fires: the High Park Fire west of Fort Collins, and
the Waldo Canyon Fire, in and to the west of Colorado Springs.
Wildfires also devastated communities of Oklahoma, Idaho,
Washington, and California.

Many spatially explicit assessments have been conducted to
evaluate the effects of or potential for wildfire. Typically these as-
sessments are focused on the wildlandeurban interface (WUI), the
area where natural vegetation intersects or mixes with structures.
The extent of theWUI is highly dependent on the specific definition
used (Platt, 2010), but according to one estimate covered 9% of land
area and 39% of all structures in the United States (Radeloff et al.
2005). Traditionally defined, the ‘hazard’ is the nature of an event
that is likely to cause harm, while ‘risk’ is the probability of the
event (Montz & Tobin, 2011). Studies of wildfire risk in the WUI
often evaluate the statistical relationship between ignition andWUI
characteristics such as building density and forest fragmentation
(Chas-Amil, Touza, & Garcia-Martinez, 2013), distance to urban area
and temperature (Badia, Serra, & Modugno, 2011), anthropogenic
land use (Guglietta, Conedera, Mazzoleni, & Ricotta, 2011), and road
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networks (Castillo, 2012; Lampin-Maillet, 2011; Narayanaraj &
Wimberly, 2012). In contrast, studies of wildfire hazard in the WUI
typically model potential wildfire intensity or exposure based on
factors such as vegetation, topography, and housing density (for
example, see Bar Massada, Radeloff, Stewart, & Hawbaker, 2009;
Herrero-Corral, Jappiot, Bouillon, & Long-Fournel, 2012; Lein &
Stump, 2009; Theobald & Romme, 2007). Such landscape-scale
assessments of risk and hazard allow analysts to make broad
spatial comparisons, but have a major limitation: they cannot be
reliably applied to individual structures or neighborhoods. This is
primarily because wildfire hazard to structures is to a large degree
determined by local rather than landscape factors (Cohen, 2008).

Modeling and experimental research have shown that a small
subset of the WUI, the area within 30e60 m of structures, largely
determines potential for structure ignition from wildfire (Cohen,
2000, 2001; Cohen & Butler, 1998). This area is known as the
known as the home ignition zone (HIZ). Specifically, potential for
ignition is primarily a function of wildfire behavior within the HIZ
and building characteristics that can make structures more resis-
tant to firebrands and heat transfer (Ager, Vaillant, & Finney, 2010;
Cohen, 1991; Cohen & Butler, 1998). The National Fire Protection
Association (2008) and Federal Emergency Management Agency
(2008) have translated these findings and others into standards
for reducing ignition hazards. The NFPA and FEMA recommenda-
tions are broadly in alignment, though differ in some details.
Generally, builders or homeowners are advised to remove all trees,
firewood, and dead branches immediately adjacent to a structure.
Within close proximity to the structure, homeowners are advised
to thin trees so that canopies are separated, to maximize paved and
gravel areas, and to remove other fuel sources (slash piles, wood
piles, propane tanks). Fine scale variations in topography influence
fire spread, for example by modifying wind speed/direction and
fuel moisture (Holden & Jolly, 2011). If structures are located on
dangerous topographical features e for example steep slopes,
saddles, ridges, or narrow canyons e homeowners are encouraged
to extend protection measures even further (e.g. require more
aggressive thinning/spacing in HIZ, Slack, 2000). Finally, home-
owners are advised to use construction design and materials
appropriate for fire-prone areas (e.g. firewise roofing and siding,
vents, eaves, soffits, decks, windows, and doors).

Despite the importance of local factors to wildfire hazard, only a
small number of spatially explicit studies in the peer reviewed
literature focus on the HIZ. One study of an Australian wildfire
quantified factors such as cover of trees/shrubs within 40 m,
whether trees/shrubs were remnant or planted, the upwind dis-
tance from houses to trees/shrubs, the upwind distance from
houses to prescribed burns conducted within 5 years, and the
number of structures within 40 m of houses (Gibbons et al., 2012).
Studies of wildfire in southern California (Syphard, Keeley, Bar
Massada, Brennan, & Radeloff, 2012) and Alberta, Canada
(Beverly, Bothwell, Conner, & Herd, 2010) quantified the spatial
morphology of housing and its relationship to ignition exposure.
Finally, a study of the Hayman Fire in Colorado quantified factors
like slope, proximity to fire station, vegetation density, and area of
defensible space surrounding structures (Bhandary & Muller,
2009). These studies focus on local scales (e.g. individual struc-
tures and neighborhoods), and typically use basic variables
describing land cover (typically limited to percent vegetation
cover) and topography (typically limited to slope and aspect). A
possible reason that spatially explicit studies of the HIZ are so
sparse is due to the expense or lack of availability of LiDAR data and
very high resolution (VHR) multispectral imagery. To identify
structures or neighborhoods characterized by potentially hazard-
ous HIZes, there is a need to develop a set of sophisticated, accurate
metrics that leverage these data sources.
The first and primary goal of this study is to develop methods to
automatically extract information that is useful in assessing relative
hazard in the HIZ and the wider landscape. Building on existing
literature, the methods exploit data sources such as LiDAR and VHR
multispectral imagery, as well as emerging methods such as object-
oriented image analysis. More specifically, the goal is to develop
metrics related to pre-fire land cover, burned area, and topography.
By characterizing the pre-fire land cover and topography, relatively
hazardous individual HIZes or neighborhoods of HIZes can be
identified. A simple HIZ hazard index comprising the pre-fire
metrics was constructed to facilitate broad comparisons. By char-
acterizing the HIZ post-fire, preliminary assessment of the burned
area can be conducted and compared to the wider landscape.
Ideally the metrics and index described here would be integrated
into broader mitigation plans that also include data collection pre-
and post-fire. The second goal is to apply the methods to a specific
data rich area: the Fourmile Canyon west of Boulder Colorado, the
site of a highly destructive fire in September 2010.

While it is tempting to evaluate the statistical relationship be-
tween HIZ characteristics and structure survival, such analyses are
be problematic for a number of reasons and will not be part of this
study. First and foremost, many factors associated with structure
loss are often unknown prior to a fire, and difficult to find out af-
terwards. For example, building materials typically must be iden-
tified in situ and cannot be reliably identified through GIS/remote
sensing. Furthermore, fire suppression and defensive actions taken
by homeowners are generally not accounted for in statistical
models (Maranghides & Mell, 2009). Finally, firebrand and flame
exposure for each individual structure are difficult to determine
and the statistical reliability is questionable given the wide variety
of conditions and the relatively small number of structure losses
(Cohen, personal correspondence, 9/23/2011). Therefore, this study
is focused on accurate characterization of the HIZ rather than sta-
tistical relationships to structure survival per se.

Methods

Overview

For the purposes of this study, the HIZ was defined as a 30 m
buffer from the building footprints (the conservative end of the 30e
60 m range identified by Cohen, 2001). The primary data sources
for the analysis are WorldView-2 Imagery, LiDAR, and building
footprints created by Boulder County GIS (Table 1). Using these
primary data sources, the HIZ for each structure was characterized
in terms of pre-fire land cover, burned area, and topography
(Table 2) and calculated a simple HIZ Hazard index from the
metrics.

Study area

Located west of Boulder Colorado, the Fourmile Canyon area is a
classic WUI landscape with a complex land ownership pattern that
includes private, BLM, USDA Forest Service, and Colorado State land
(Fig. 1). It is also the site of the Fourmile Fire which burned 2500 ha
and destroyed 168 homes (out of 474 homes and 848 other struc-
tures within the burn perimeter) from September 6the16th, 2010
(Graham et al., 2012, 110 pp.). The housing density within the burn
perimeter averaged 1 house per 5 acres, but is considerably more
than this along canyon roads. Ranging from 5361 to 9348 m in
elevation, the burn perimeter is situated in themontane zone of the
Colorado Front Range. The lowest elevations of the montane zone
are dominated by open park-like stands of ponderosa pine (Pinus
ponderosa), mixed Rocky Mountain juniper (Juniperus scopulorum)
on south facing slopes and with Douglas fir (Pseudotsuga menziesii)



Table 2
Metrics for characterizing the HIZ, including the method and data sources.

Category Metric Method Main data sources

Pre-fire
land
cover

Percent cover Forest, grass,
bare as a % of
total area

Land cover objects

Forest
contiguity

Average
nearest
neighbor
distance
between forest
polygons

Land cover objects

Adjacency of
canopy to
structure

Evaluate if
structure
polygons
intersect or
adjoin forest
polygons

Land cover objects, building
footprints

Predominance
of ladder fuels

% of LiDAR
Returns from 1
to 3 m from
surface

LiDAR point cloud and DEM

Burned area Percent burned
cover

Burned forest
and burned
grass as a % of
total area

Land cover objects

Structure
survival (yes/
no)

Logistic
Regression

Building footprints,
WorldView-2 imagery,
percent cover, percent
burned cover

Topography Slope Average within
HIZ in degrees

LiDAR point cloud and DEM

Northness Cosine of the
aspect

LiDAR point cloud and DEM

Landform class
(V-shaped
canyon, ridge
top, saddle,
chimney)

Topographic
Position Index
(Jenness, 2006)

LiDAR point cloud and DEM

Exposure Aspect ratio of
structure
relative to the
downhill
direction
within HIZ
(FEMA, 2008;
Slack, 2000)

Building footprints, LiDAR
point cloud and DEM

Table 1
Primary data sources for deriving pre-fire land cover and burned area in the HIZ.

WorldView-2 Imagery

Source DigitalGlobe (http://www.digitalglobe.com/
about-us/content-collection#worldview-2)

Dates June 10, 2010 and Sept 10, 2010
Resolution (GSD) 0.5 m (RGB) and 2 m (8-band multispectral)
Bands Coastal 400e450 nm

Blue 450e510 nm
Green 510e580 nm
Yellow 585e625 nm
Red 630e690 nm
Red Edge 705e745 nm
Near-IR1 770e895 nm
Near-IR2 860e1040 nm

LiDAR

Source Boulder Creek Critical Zone Observatory
(http://criticalzone.org/boulder/)

Date August, 2010
Sensor Optech GEMINI Airborne Laser Terrain

Mapper (ALTM)
Aircraft Piper PA-31 Chieftain twin engine
Point Density 10.28 p/m2

Laser PRF 100 kHz
Flight Altitude 600 m
Scan angle �14�

Horizontal accuracy w11 cm
Vertical accuracy 5e30 cm

Building footprints of 1322 structures

Source Boulder County GIS (http://www.bouldercounty.org/
gov/data/pages/gisdldata.aspx)

Date October 2010
Method Manual digitization
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on north-facing slopes. In contrast, the upper elevations of the
montane zone are dominated by dense mixed stands of Douglas fir
and ponderosa pine, with a thick understory of shrubs and grasses.
Historically, the lower elevations of the montane zone were
dominated by surface fires at intervals of 10e40 years, while the
uppermontane zonewas characterized by amixture of surface fires
and stand replacing fires (Veblen, Kitzberger, & Donnegan, 2000).
At the time of the fire, the fine dead fuels from ponderosa pine,
rocky mountain juniper, and Douglas fir were very dry due to dry
and warm weather in August 2010 (Graham et al., 2012, 110 pp.).
Live fuel moistures were at or slightly below normal. According to
the Sugarloaf RAWS weather station, winds were blowing down-
slope from 16 to 24 kph, with gusts up to 66 kph the morning of
September 6th.

The Fourmile Canyon Fire Findings report (Graham et al., 2012,
110 pp.) stated that most of the fire growth (93% of the total area)
and most home destruction took place during short bursts of
extreme fire conditions on September 6th. During this time, the
structure protection capability of local fire departments was over-
whelmed (Graham et al., 2012, 110 pp.). While the WUI as a whole
was experiencing extreme fire conditions, the HIZ often experi-
enced lower intensity surface fires. Indeed, the study found that
83% of destroyed homes were associated with low-intensity fire, as
estimated by the degree of consumed vegetation surrounding a
home. This is consistent with previous studies that show that home
destruction mostly occurs with low and moderate intensity
burning, as urban structures such as roads act as a firebreak to
disrupt the most intense fire behavior (Cohen & Stratton, 2008).
Since many houses in the WUI are widely spaced, the fire generally
did not travel directly from house to house and the structures
themselves did not significantly promote wildfire growth. By
visually assessing remotely sensed imagery, the authors identified a
topographic effect where north-facing slopes and canyon bottoms
were less affected by fire, and where steep southerly slopes were
more affected. However, the authors found no evidence that the
240 ha of fuel treatments (w10% of the total burned area) affected
fire behavior. Many factors made it difficult to make judgments
about treatment effectiveness, including the shear variety of pre-
scriptions, the lack of prescribed fire, and the many remaining piles
of slash in treatment areas. While fire protection was clearly not
effective for structures that were destroyed, it was difficult to
evaluate the role of fire protection in saving the structures that
survived. Mountain Pine Beetle was likely not a factor, as the
Fourmile Fire area had only small patches of lodgepole pine and
ponderosa pine trees attacked or killed by Mountain Pine Beetle
(Dendroctonus ponderosae).

The Fourmile Canyon Fire Findings report was based on post-fire
in situ observations, interviews, and qualitative interpretation of
imagery. In contrast, this study focuses on automated extraction of
quantitative information from remotely sensed imagery and other
available GIS data.

HIZ metrics: pre-fire land cover

Fine-scale information about vegetation and fuel is needed to
reliably assess wildfire hazard (Ottmar, Blake, & Crolly, 2012). In this

http://www.digitalglobe.com/about-us/content-collection#worldview-2
http://www.digitalglobe.com/about-us/content-collection#worldview-2
http://criticalzone.org/boulder/
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Fig. 1. Study area e the Fourmile Fire perimeter west of Boulder, Colorado.

Table 3
Classification rules for pre-fire land cover.

Elevation (m) NDVI Brightness
(DNs)

Forest �2 �0.1 <60
Bare <2 <0.05 �60
Grass <2 �0.05 e
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study, information about land cover (including information about
vegetation and fuels) was derived with an object-oriented image
analysis (OBIA) strategy using the eCognition Developer software
Trimble (2011). OBIA uses both spectral and contextual data
extracted from remotely sensed imagery to create meaningful ob-
jects at multiple scales (Blaschke, 2010). A typical pixel-based study
uses supervised classification to classify each pixel into discrete
classes (trees, grass, etc.) based on the spectral response compared
to a training sample. In contrast, in an OBIA study, imagery is first
segmented into homogeneous objects and then classified based on
spectral response but also geometry and contextual factors such as
the relationship with neighboring objects, sub-objects, or super-
objects. Many studies have found that OBIA yields higher classifi-
cation accuracy than pixel-based methods for land cover classifi-
cation and change detection (Bhaskaran, Paramandanda, &
Ramnarayan, 2010; Blaschke, 2010; Platt & Rapoza, 2008). OBIA
techniques are also able to be used to accurately distinguish areas
affected by surface and crown fire (Mitri & Gitas, 2006) inways that
are transferable to other sites (Polychronaki & Gitas, 2012).

The datasets used for the OBIA classification were WorldView-2
Imagery and LiDAR data (Table 1). Land cover and vegetation
classifications that use LiDAR (Mutlu, Popescu, & Zhao, 2008) or a
combination of LiDAR and high spectral resolution imagery (Koetz,
Morsdorf, Van Der Linden, Curt, & Allgöwer, 2008) can yield
improved classifications for fire management. In this case, LiDAR
and several bands unique to the WV-2 sensor (coastal blue, yellow,
red edge and a second infrared band) were used to classify burned
and unburned objects. Studies in the gray literature have shown
that these ‘special bands’ can improve classification of forest spe-
cies (Omar, 2010) and agricultural vegetation classes (Ruiz,
Hormosilla, Serisa, Recio, & Fernandez-Sarria, 2010). Furthermore,
they allow the use of NDVI-like image ratios that are potentially
sensitive to differences in water and soil (Wolf, 2010). In this study,
the additional bands are potentially useful for distinguishing
burned from unburned areas. It should be noted that most of the
studies demonstrating the superiority of WV-2 imagery were part
of a contest sponsored by GeoEye (now Digitalglobe), the maker of
the satellite. Additional peer reviewed studies are needed to
confirm the benefits of the extra bands.

OBIA has two primary steps: segmentation and classification. To
segment the images, first contrast split segmentation was applied
to a 1 m slope raster to create objects that align with steep slopes
(segmentation parameters: step size ¼ 20). This segmentation
procedure ensured that features with steep slopes (e.g. structures,
trees, rock outcroppings) are placed in separate objects from
spectrally similar neighbors. Next, a multi-resolution segmentation
procedure was then applied based on WV-2 3-band RGB imagery
from June 2010 (segmentation parameters: shape ¼ 0.1,
compactness ¼ 0.5, scale ¼ 20). Objects were then classified into
one of three classes (forest, bare, grass) based on variable thresh-
olds determined through experimentation by an image analyst
(Table 3). The thresholds related to three variables: elevation, NDVI,
and Brightness. Elevation represents the elevation of the object
above bare earth (as derived from LiDAR), NDVI is the Normalized
Difference Vegetation Index, and RBG Brightness is the average
brightness across the red, green, and blue bands. The bare category
includes all vegetation-free surfaces including rock outcroppings,
structures, and roads. Objects with shrubs over 2 m in height (as
derived from LiDAR) are included in the forest category while less
than 2 m tall are included with grass.

Based on the classification, the following metrics were calcu-
lated: percent cover, forest contiguity, and proximity of canopy to
structure (Table 2). In addition, ‘Predominance of ladder fuels’ was
calculated using LiDAR data, which is associated with the quantity
of branches and leaves close to the ground that create vertical
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continuity between the forest understory and the canopy. A
common recommendation to homeowners is that ladder fuels
should be removed (National Fire Protection Agency, 2008), e.g. up
to 3 m high for trees at least 10 m tall (Slack, 2000). To calculate
this variable, first the elevation of each LiDAR point was sub-
tracted from a bare-earth elevation raster. This gave an elevation
value for each point above the surface of the ground. Secondly, all
returns for areas where the maximum return was <6 m were
filtered out. This eliminated non-forest areas and areas with only
shrubs and smaller trees. Third, the total number of returns from 1
to 3 m above the bare earth surface was divided by the total
number of returns. This LiDAR metric is associated with vertical
forest structure, and directly corresponds to understory biomass
contained in ladder fuels (Skowronski, Clark, Nelson, Hom, &
Patterson, 2007). Note that returns from 1 to 3 m in forested
areas primarily indicate ladder fuels, but also can also indicate
other small raised features such as understory shrubs, wildlife, or
log piles. Returns between 0 and 1 m were discarded as many
were ground returns that had not been filtered out due to limi-
tations to the bare earth raster.

HIZ metrics: burned area

A second segmentation and classification was used to identify
forest and grass burned by the Fourmile Fire. First, all adjacent
objects with an identical classification (Forest, Bare, or Grass) were
merged. A multi-resolution segmentation procedure was then
applied based on post-fire WV-2 3-band RGB imagery from
September 2010 (segmentation parameters: shape ¼ 0.1,
compactness ¼ 0.5, scale ¼ 20). Samples of grass objects (burned
and unburned) and forest objects (burned and unburned) were
identified (5e10 object samples for each category). For each object,
the mean spectral value (pre-fire, post-fire, and change) were
calculated for the 8 WorldView-2 bands, plus the following ratio
indices developed specifically for WorldView-2 (Wolf, 2010):

� Normalized Difference Vegetation Index (NDVI): (NIR1 � Red)/
(NIR1 þ Red)

� Normalized Difference Water Index (NDWI): (Coastal � NIR2)/
(Coastal þ NIR2)

� Non-Homogenous Feature Difference (NHFD): (Red
Edge � Coastal)/(Red Edge þ Coastal)

� Normalized Difference Soil Index (NDSI): (Green � Yellow)/
(Green þ Yellow)

Feature space optimization (FSO), which identifies the combi-
nation of variables that yield the largest averageminimum distance
between samples of the different classes, was then applied. Using
FSO, the following bands and indices were found to best distinguish
the burned from unburned objects:

� Near-IR1 and Near-IR2 (pre-fire image)
� NDWI and NHFD (post-fire image)
� dNDWI and dNHFD (change in indices)

Based on the bands and indices above, a nearest neighborhood
classificationwas used to classify grass and forest objects as burned
or unburned. After the nearest neighbor classification, certain ob-
jects were re-classified as ‘ambiguous’. Ambiguous objects are
those that meet the following characteristics: (1) they were clas-
sified as forest or grass in the pre-fire image, (2) they have a
brightness of <50 DNs (i.e. are in shadow) in the post-fire image,
and (3) they are adjacent to burned objects. Objects that met the
first two characteristics but were not adjacent to burned objects
were classified as unburned.
Two additional metrics were then calculated: percent burned
cover and structure survival (Table 2). Percent burned cover was
simply calculated as the percentage of each HIZ comprising burned
grass or forest. Structure survival was calculated in SPSS using lo-
gistic regression, a probabilistic generalized linear model for pre-
dicting the outcome of a binary state (Agresti, 2002). Logistic
regression was used because it performed better than nearest
neighbor classification for classifying each structure within the
burn perimeter as ‘survived’ or ’destroyed’. The independent vari-
ables were reflectance inWorldView-2 spectral bands for both time
periods; the ratios (NDWI, NHFD) for both time periods; dNDWI;
dNHFD; percent grass, bare, and forest cover; and percent burned
cover within the HIZ.

HIZ metrics: topography

The slope, northness, and presence of potentially hazardous
landform classes were calculated across the burn perimeter and
within the HIZ. Fire spreads more quickly on steep slopes, and fuels
tend to be drier on south-facing slopes (in the northern hemi-
sphere). For this reason, wildfire hazard is associated with both
slope and aspect. Average slope and average northness were
calculated within the HIZ of each structure. ‘Northness’was defined
as the average cosine of the aspect within the HIZ. Values close to
one suggest a north facing slope, while values close to negative one
suggest a south facing slope.

Landform classes such as canyons, ridges, saddles, and can also
intensify fires. Canyons can concentrate winds, leading to
increasing wildfire intensity and rate of spread. Ridges are char-
acterized by high winds because they are higher than their sur-
roundings. As the wind crosses the ridge it may even create a
leeward eddy that exposes structures to wind and fire from the
opposite direction (Federal Emergency Management Agency, 2008;
Slack, 2000). Saddles are created where valleys cross ridges, and are
desirable because they provide flat building surfaces and shelter.
Like canyons and ridges, saddles experience high winds and fire
intensity. Potentially hazardous landform classes were identified
using the Topographic Position Index (TPI, Jenness, 2006). The TPI is
the difference between the elevation of a grid cell and the average
elevationwithin a neighborhood surrounding the grid cell. High TPI
indicates a cell is higher than its surroundings, while a low TPI
indicates that the cell is lower than its surroundings. To identify
landforms, TPI was calculated using a radius of 100 m (local
neighborhood) and 1 km (regional neighborhood). TPI values were
then transformed by subtracting the mean value and dividing by
the standard deviation (the standard deviationwas 11m in the case
of TPI-100m and 81m in the case of TPI-1 km). Canyons, ridges, and
saddles were classified based on the two TPI z-scores and slope
(Table 4, adapted from Jenness, 2006).

Fires typically travel upslope, thus structures whose widest
sides face downhill are more exposed to the probable fire path than
those whose narrowest sides face downhill (Federal Emergency
Management Agency, 2008; Slack, 2000). Also, larger structures
have greater exposure than smaller ones. Exposure was measured
using the aspect ratio (length-to-width) of the building footprint
polygon on its downhill-facing side. For example, an exposure value
of 2 means that a structure is twice as long in the downhill-facing
direction from which the fire is likely to come, as it is in the di-
rection perpendicular to downhill. The downhill-facing direction
was determined by (1) generating an aspect raster from a 1m DEM,
(2) creating cosine and sine rasters from the aspect raster, (3)
calculating the zonal mean of sine and cosinewithin the HIZ and (4)
using the arctan2 function to convert the zonal mean sine and
cosine into an ‘average aspect’ raster. The minimum bounding ge-
ometry length and width were then calculated for each structure



Table 5
Classification accuracy summary of pre-fire land cover, burn area, and structure
survival.

Pre-fire
land cover

Burn
area

Structure
survival

Total agreement 89 90 88
Allocation disagreement 9 10 8
Quantity disagreement 2 <1 4

Table 4
Classification rules for landform class using the topographic position index (TPI).
“More hazardous” landform classes are shown in bold.

TPI-100 m (standard deviations from the mean)

<�1 �1 to 1 >1

TPI-1 km
(standard
deviations
from the
mean)

>1 Saddle Flat ridge or
mesa tops

Ridge

�1 to 1 Chimney Flat slope Drainage divide
<�1 Canyon Valley bottom Local high point

within valley
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with respect to the ‘average aspect’ (i.e. dominant downhill direc-
tion). For each topography variable, the median value within the
HIZ was compared to the median value within fire perimeter as a
whole.

Accuracy assessment

The object-oriented classification of pre-fire land cover, and
burned area was validated on a manual interpretation of 600 ob-
jects. Of the 600 objects, 200 were randomly selected from any-
where within the burn perimeter, 204 objects were randomly
selected from within the HIZ, and 196 objects were “ground
truthed” in the field. Two image analysts visually classified the 404
randomly selected objects based primarily on the true-color WV-2
imagery. In cases where the class was not obvious, or when the
classification by the two analysts differed, the analysts used sup-
plemental imagery such as a color-infrared composite of the WV-2
imagery or imagery from various dates from Google Earth to make
the class determination. An additional 196 objects were visited in
the field in August 2011, 11 months after the fire. During this
“windshield survey” object classifications were evaluated at safe
stopping points along the public roads within the burn perimeter.
Following Pontius and Millones (2011), the accuracy of the object
classification was evaluated with using the following metrics: total
agreement, allocation disagreement, quantity disagreement, and
commission intensity. Total agreement is the objects correctly
classified divided by the total objects, weighted by each object
class’s prevalence in the overall landscape (determined by the
random sample of the burn perimeter). Quantity disagreement is
the percentage of classification errors caused by an incorrect pre-
diction in the proportions of the classes (Pontius & Millones, 2011).
Allocation disagreement is the percentage of classification errors
caused by an incorrect prediction in the location of particular
classes. Commission intensity describes the percentage of classifi-
cation errors where an object is predicted to be a particular class
when in fact it is a different class. Omission intensity describes the
percentage of classification errors where an object of a particular
class is classified as something else. ‘Structure survival’ was vali-
dated separately using data on structure survival collected by
Boulder County, and accuracy was assessed using the Pontius &
Millones, 2011 method.

Characterizing hazard in the HIZ

For the study area, the average value of metrics for the HIZ and,
for comparison, those of the fire perimeter as a whole (the WUI)
were reported. The values of HIZ metrics for individual structures,
while of interest to homeowners, are not reported here.

In addition, a simple HIZ hazard index was created from 8
metrics. To do this, each pre-fire variable in Table 2 was re-classified
into a binary variable (“more hazardous” and “less hazardous”). For
continuous variables (percent non-bare cover, forest contiguity,
predominance of ladder fuels, slope, northness, exposure), “more
hazardous” was defined as a value in the top quintile of all struc-
tures. For landform class, a HIZ was classified “more hazardous” if it
was characterized as canyon, ridge top, saddle, or chimney. For
adjacency of canopy to structure, any HIZ with a forest canopy
adjoining or intersecting a structure was “more hazardous”. The
number of times a HIZ had an attribute classified as “more haz-
ardous” was then summed, providing a simple index (0e8).

The HIZ hazard index can be used to identify individual struc-
tures that may be hazardous, but also clusters (i.e. neighborhoods)
of high and low hazard. To identify such clusters, Local Moran’s I
(Anselin, 1995) was calculated and mapped using OpenGeoDa
(Anselin, Syabri, & Kho, 2006). Local Moran’s I identifies observa-
tions that are significantly autocorrelated to neighboring observa-
tions. Positive autocorrelation suggests that HIZes have similar
values to nearby HIZes in terms of their hazard index (i.e. high
values are next to other high values or low values are next to other
low values). Negative autocorrelation suggests that HIZes have
dissimilar values to nearby HIZes. In this case, an inverse distance
weighing functionwas used to construct the spatial weights matrix,
and a spatially random reference was used to assess statistical
significance (p ¼ 0.01 level).

Results

Accuracy assessment

The classification accuracies of pre-fire land cover (89% total
agreement) and burn area (90% total agreement) were high overall
(Table 5). Furthermore, most of the classification errors were due to
allocation disagreement rather than quantity disagreement. In
terms of individual classes, bare had slightly higher errors of
omission and commission than forest or grass, most likely because
bare overlaps spectrally and elevation-wise with dry grass inter-
spersed with rocky soil (Table 6a). The most common error in the
burn area classification was classifying a burned object as not
burned (16% error of omission, Table 6b). This could occur in objects
that are partially burned but retain photosynthetic activity (high
NDVI) to which the classifier is sensitive. Overall, however, the
classification accuracies for individual classes were high.

The classification accuracy of structure survival was also high
(88% total agreement; area under the curve of .92). The percentage
of burned area and the amount of pre-fire forest are helpful for
classifying structure survival (Table 7). This suggests that, not sur-
prisingly, themore land in the HIZ burns, themore likely a structure
is destroyed. However, the errors of commission for structure sur-
vival were high at 32% (Table 6c), indicating that the model over-
predicted destroyed structures. Indeed, many structures survived
the fire despite having a high proportion of forest and high pro-
portion of burned land cover, potentially due to structure charac-
teristics. Surprisingly, spectral information (WorldView-2 bands
and related indices) was not useful in classifying structure survival.
No post-fire LiDAR data exists, which could have been potentially
used to create more accurate classifications of structure survival.
Since structure survival could not be directly classified, only infer-
red from the extent of pre-fire forest and burning in the HIZ, this is



Table 6
Confusion matrices of pre-fire land cover, burn area, and structure survival.

A. Pre-fire land cover

Visual interpretation Total Errors of
commission

Other Bare Forest Grass

Nearest
neighbor
classification

Bare 1 51 3 7 62 18%
Forest 0 0 233 28 261 11%
Grass 0 7 22 248 277 10%
Total 1 58 258 283 600

Errors of omission 12% 10% 12%

B. Burn area

Visual interpretation Total Errors of
commission

Not burned Burned

Nearest
neighbor
classification

Not burned 286 44 346 13%
Burned 22 232 254 9%
Ambiguous 16 0 0
Total 323 276 600

Errors of omission 12% 16%

C. Structure survival

Ground truth Total Errors of
commission

Survived Destroyed

Logistic
regression
classification

Survived 479 27 506 5%
Destroyed 56 118 174 32%
Total 535 145 600

Errors of omission 10% 19%

Table 8
Average metrics of HIZ compared to fire perimeter (WUI).

HIZ WUI

Pre-fire Land Cover Bare 15% 7%
Forest 37% 47%
Grass 43% 45%
Forest contiguity (m) 2 1
Predominance of ladder fuels 9% 11%

Burn Area Forest burned 9% 22%
Grass burned 25% 33%
Ambiguous 3% 2%
Unburned/bare 63% 42%

Topography Ridge 5% 4%
Canyon 13% 5%
Chimney 4% 8%
Saddle <1% <1%
>20� slope 29% 55%
Other 55% 39%

R.V. Platt / Applied Geography 51 (2014) 108e117114
not a widely applicable model despite the high classification
accuracy.
HIZ metrics

Given the high accuracy of pre-fire land cover and burning,
object classifications can be evaluated with some confidence. First,
the average characteristics of the HIZ were compared to the fire
perimeter as a whole (theWUI). Pre-fire, 47% of theWUI comprised
forest, 45% comprised grass, and 7% comprised bare (Table 8). In
contrast, the HIZ had a higher percentage of bare (15%) and a lower
percentage of forest (37%) than the WUI in the fire perimeter. The
forest contiguity (as measured by the average distance between the
edges of forest objects) was found to be lower within the HIZ than
within the WUI (2 m vs. 1 m). The predominance of ladder fuels (as
measured by the percentage of first returns from 1 to 3 m) was
similar within the WUI and the HIZ (11% vs. 9%). While 55% of the
area within the WUI burned, only 34% burned within the HIZ. In
short, the average HIZ of Fourmile Canyon are actually less haz-
ardous than the WUI within the fire perimeter according to several
of our metrics e it contain more bare and less forest land, have
more widely spaced canopies, and experienced less extensive
burning potentially due to fire suppression.

In terms of topography, theWUI has a greater percentage of land
with steep slope (>20�) than does the HIZ (54% vs. 29%, Table 8). In
contrast, the HIZ has a slightly greater percentage of land classified
as canyons than does theWUI (13% vs. 5%). This is not surprising, as
access and construction is more difficult in steep or inaccessible
terrain, and major roads tend to follow canyons. Ridges, chimneys,
and saddles constitute a small percentage of the WUI and a
Table 7
Results of logistic regression classification of structure survival.

B S.E. Wald df Sig. Exp(B)

Pre-fire Forest (m2) .002 .000 69.706 1 .000 1.002
Percent Burned 7.054 .585 145.409 1 .000 1156.969
Constant �6.060 .516 137.798 1 .000 .002
similarly small percentage of the HIZ. The ‘northness’ of the HIZ
indicates that the WUI on average tilts farther southward by 8�

compared to the HIZ. Overall sites selected for structures tend to be
a little less steep and are slightly less southward facing than the
WUI, but otherwise the topography is similar.

HIZ hazard index

Out of 1322 structures within the fire perimeter, 81% score as
“more hazardous” on only 1e3 of the 8 metrics. An additional 7% of
structures did not score as “more hazardous” on any metrics, while
11% scored as “more hazardous” on 4 or more metrics (Fig. 2).

The Local Moran’s I map (each point representing a HIZ) shows
while most HIZes do not demonstrate significant local spatial
autocorrelation, there are several clusters of significant spatial
autocorrelation (Fig. 3). Of particular interest, there are highehigh
clusters at the center of the burn perimeter running along canyon
roads, in particular parts of Fourmile Canyon Canyon Drive and
Gold Run Road. HIZes in this area tend to score high in the hazard
index due to the steep slopes, narrow canyon topography, and
contiguous forest canopy. There are also several areas with lowe

low clusters, including within the town of Gold Hill and in the
northeastern portion of the burn perimeter along Sunshine Canyon
Road. These areas tended to have more bare land cover, spread-out
tree canopies, and lower slope. In short, while the HIZ hazard index
is highly spatially heterogeneous, there are some clusters of high or
low hazard index values.

The HIZ hazard index can also be used to assess or identify in-
dividual HIZes. To illustrate, two HIZes are shown, one with a score
of 5 (Fig. 4A) and one with a score of 6 (Fig. 4B). Fig. 4A shows a HIZ
that was rated “more hazardous” in terms of: percentage of non-
bare land cover (95%), adjacency of canopy to structure, predomi-
nance of ladder fuels (18% of first returns from 1 to 3 m), northness
(faces due south), and landform class (ridge). The grass and forest
were almost entirely burned, and the structure was destroyed in
the fire. Fig. 4B shows a HIZ that was rated “more hazardous” in
terms of: forest contiguity (average nearest neighbor distance of
zero), slope (average of 25�), landform class (canyon), and exposure
(the long side of the house is facing northeast, which is the down-
slope direction as well as the direction from which the fire came).
Though the fire burned forest right up to the structure, the struc-
ture was not destroyed in the fire.

Conclusion

A suite of methods was presented that is designed to extract
specific information about the HIZ and the wider landscape. The



Fig. 2. Frequency distribution of HIZ Hazard Index. The index is calculated for each HIZ
and represents the number of metrics classified as ‘more hazardous’ (0e8).
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methods go beyond previous GIS approaches which typically
operate at relatively course spatial resolutions and focus on the
WUI as awhole rather than the HIZ. In contrast, the methods in this
study have numerous advantages. First, the data sources have very
high spatial and spectral resolution (0.5 m RGB, 2 m 8-band mul-
tispectral, and 1 m LiDAR) that allow fine-scale variation in HIZ to
be characterized. Secondly, the object-oriented classification
approach yields high classification accuracy and can easily integrate
topological relationships (i.e. adjacency of canopy to structure,
forest contiguity). Third, measures of topography (for example,
Fig. 3. Local Moran’s I of HIZ Hazard Index within the Fourmile Fire Perimeter. ‘Highehigh’
clusters of HIZes with low HIZ Hazard Index values; ‘not significant’ represents areas wher
northness, TPI, forest contiguity, predominance of ladder fuels)
provided information that relate to standards for ignition reduction
(e.g. Federal Emergency Management Agency, 2008).

The suite of methods was applied to the Fourmile Canyon fire
perimeter. Compared to the WUI, the HIZ is characterized by a
greater percentage of grass and bare land, and lower percentage
forest; a greater percentage of canyons and a lower percentage of
steep slopes (>20�); less south-facing aspect; and a lower per-
centage of burned land, especially forest. The findings are consis-
tent with the findings of Graham et al. (2012, 110 pp.) which found
that much of the structure destruction was caused by ground fire
and that there was a strong topographic effect whereby canyons
were less exposed to fire. This is also consistent with studies that
suggest that roads and bare ground in the HIZ actually reduce fire
intensity (Cohen & Stratton, 2008). While the logistic regression
classification of structure survival produced too many ‘false posi-
tives’ to be useful, it did reveal an association between pre-fire
forest cover and structure survival. The result is consistent with
empirical studies of previous fires that show the proximity and
amount of trees near structures relate to structure survival
(Bhandary & Muller, 2009; Gibbons et al., 2012). The HIZ hazard
index was spatially heterogeneous, but with several clusters of high
and low index values. The town of Gold Hill was one ‘lowelow’

cluster, which is consistent studies that show the probability of
housing loss is lower in areas of highest housing density and fewer
number of isolated development clusters (Syphard, Bar Massada,
Butsic, & Keeley, 2013).

Not only are the results consistent with the literature on
structure survival, they are also of practical use and can be broadly
applied to other fire-prone areas. Themethods can be easily used to
identify specific structures that with potentially hazardous HIZes.
Structures that are ‘flagged’ through this process could be followed
up with site visits or automatic mailings. The outputs could also be
used in comprehensive hazard assessments for structures such as
Wildfire Wizard or the National Fire Protection Agency structure
assessment rating form (National Fire Protection Agency, 2008).
represents clusters of HIZes with high HIZ Hazard Index values; ‘lowelow’ represents
e the HIZ Hazard Index values are not related to neighboring values.



Fig. 4. Examples of HIZes with high HIZ Hazard Index values (location within study area shown in Fig. 1). A shows an area rated “more hazardous” in terms of percentage of non-
bare land cover, adjacency of canopy to structure, predominance of ladder fuels, northness, and landform class. B shows an area that was rated “more hazardous” in terms of forest
contiguity, slope, landform class, and exposure.
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Furthermore, such information along with in situ data could be
used to help design or refine Community Wildlife Protection Plans
(CWPP, Jakes et al., 2011), which identify high priority areas for
hazardous fuel reduction, and make recommendations for ways
homeowners can reduce structure ignitability. This would partic-
ularly benefit rural communities, which typically focus on post-
disaster recovery and response rather than mitigation in their
planning process (Frazier, Walker, Kumari, & Thompson, 2013).
Unfortunately, while the methods described here have great
promise, availability of LiDAR and multispectral VHR satellite im-
agery remains expensive and limited. Furthermore, object-oriented
image analysis requires expertise and software that is not available
in most planning offices. Nevertheless, the methods described in
this study show great promise in helping to evaluate characteristics
of the HIZ pre- and post-fire.
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