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Goals 

 
You should be able to measure the broadening of the reflected signal from a 

rotating body to determine the rate at which it rotates. 

 

Objectives 
 

If you learn to ....... 
 

Use a simulated radio telescope to acquire pulse spectra. 

 

Read a pulse spectrum to find the frequency shift of the pulse. 

 

Measure the Doppler-shift to interpret the change in frequency between 

the outgoing pulse and the reflection. 

 

You should be able to ...... 

 
Determine the radial velocity of Mercury and calculate its period. 

 

Calculate the rotational period of Mercury. 
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Equipment 

 
Sky and Telescope Reprint LE 11, pocket calculator, IBM-compatible computer running CLEA software 

for Radar Measurement of the Rotation Rate of Mercury. 

 

Introduction 
 

Because Mercury is a small planet whose surface features have low contrast, and because it is so close to 

the sun that it is rarely visible against a dark sky, it is difficult to determine how fast it is rotating merely by 

looking at it from the earth. In recent years, however, radar techniques have proven most effective in 

measuring its speed of rotation. The method you will employ here actually has wider application than just 

the measuring the rotation of Mercury. It can be used to study the behavior of other planets as well, from 

cloud-covered Venus to the rings of the major planets, to the smallest asteroids. 

 

The technique of this lab is described below and in Reprint LE 11 by Hoff and Schmidt. The basic idea is 

to use a radio telescope to send short pulse of electromagnetic radiation of known frequency towards the 

planet Mercury and then to record the spectrum (frequency versus intensity) of the returning echo. 

Depending on the relative position of the earth and Mercury, the pulse will take between 10 minutes and 

half hour to travel to Mercury, bounce off, and return. 

 

By the time the pulse has reached Mercury, it has spread out to cover the entire planet. Because the planet’s 

surface is a sphere, the pulse hits different parts of the planet at different times, however. The pulse first 

hits the surface at a point directly on a line between the centers of the earth and Mercury (the “sub-radar 

point”), and few microseconds later from points further back, toward the edges of the planet. Thus we wait 

for the first echo, from the sub-radar point, and then by looking at the returning echoes at succeeding times, 

each a few microseconds later than the next, we get information about different parts of Mercury’s surface. 

 

The frequencies of the returning echoes are different from the frequency of the pulse sent out because the 

echoes have bounced off the moving surface of Mercury. Any time a source of radiation is moving radially 

(towards or away from the observer) there will be a Doppler shift in the received frequency that is 

proportional to the velocity along the line of sight. 

 

 
 

 

 

Figure 1 

The Doppler 

Shift 
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There are two motions of Mercury that can produce such a shift: its orbital velocity as a whole around the 

sun, and its rotation around its axis. The first echo, from the sub-radar point, is shifted in frequency only by 

the orbital velocity of the planet as a whole. We can calculate how fast the planet is moving with respect to 

the earth from the amount of the shift, but we can’t tell how fast it’s rotating (spinning) because the 

component of the rotational velocity of the surface of Mercury is perpendicular to our line of sight at this 

point (see Figure 1), and so there is no additional frequency shift. The echoes that come in after the sub-

radar echo, however, show additional shifts because they come from further back where the rotational 

velocity is more directly along our line of sight. Because of the rotation of Mercury, one edge of the planet 

is moving a towards us a little faster than the planet as a whole, and the other edge is moving away towards 

us a little slower than the planet as a whole (See Figure 1). So, due to the Doppler effect, part of the 

returning echo (from the faster moving edge of Mercury) is at a slightly higher frequency, and part of the 

returning echo (from the slower moving edge) is at a slightly lower frequency as shown in Figure 2: 

 

 

 
 

 

 

 
We measure the amount of this frequency shift and apply our knowledge of the Doppler effect to calculate 

the velocity of the surface of Mercury, and from this, its period of rotation. 

 

Using the CLEA Radio Telescope 

 
Overall Strategy 

Listed below is the overall plan of action for this lab: 

1. Turn on radio telescope. 

2. Calculate position of Mercury and point telescope to it. 

3. Send out pulse. 

4. While waiting for echo to return, calculate geometrical parameters for echoes at 120, 210, 300, 

and 390 microseconds after the arrival of the sub-radar pulse. 

5. Measure the highest and lowest frequency shift of the returning echoes from the four delayed 

echoes. 

Higher Frequency Echo from side moving towards Earth a 

little faster (Rotational Velocity component towards earth) 
Lower Frequency Echo from side moving towards Earth a little 

slower (Rotational Velocity component away from earth) 

 

Figure 2 

FREQUENCY OF RETURNING ECHO 
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6. Record these data and then use them to calculate the rotation velocity of the equator of Mercury 

from each of the four delayed echoes. 

7. Calculate the rotational period in days from the velocity and the known circumference of the 

planet. 

8. Check answers for reasonableness and make sure that all requested information is provided. 

 

Getting Started 

 

This exercise simulates the operation of a large radio telescope used to determine the rate of rotation of a 

planet by Doppler radar. Begin by selecting Log In on the main menu, and fill in the requested information. 

After completing the log-in, select Start on the main menu. The control panel that appears has only three 

push-button controls, as well as displays to show the frequency the telescope is tuned to and the coordinates 

it is pointed to in the sky. Begin by pressing the Tracking button to turn on the sidereal drive so that the 

telescope will track the planets as the earth turns. This will activate the other controls menu. 

 

Select Ephemeris from the main menu; this activates a program that calculates the position of a planet for 

any date and time.  Use today’s date and local time, or December 1, 1999 for the launch date and 0 for 

UT .  Press OK to compute the ephemeris, which will appear as a table on the screen. You will want to 

record the distance between the earth and Mercury (AU) and the expected length of time for the pulse to 

return.  If you already know the coordinates and the distance from the Earth to the target planet, press Set  

Coordinates, respond OK to the message that appears, and enter the coordinates and distance on the dialog 

box that appears. When you have finished press OK and the telescope will begin moving to point to the 

target. 

 

 

Distance between the Earth and Mercury (AU) ______________________ 

 

Time for Pulse to Return (lm) ____________________________________ 

 

 

 Leave the ephemeris window on the screen or minimize it (do not close it), and press Set Coordinates. 

Respond Yes to Use Computed Values and the telescope will begin slewing (moving rapidly) to point to 

the planet. (If you left the Ephemeris Computation window on the screen it will minimize when the slew 

starts. If you minimized it, it remains minimized and you can reopen it for reference.) 

 

When the telescope move is complete, the red Slewing light will go out, a Slewing Completed message 

will appear on the display screen, and the telescope’s pointing coordinates will appear on the control panel. 

(If you now turn off the drive by pressing the Tracking button you will notice that the right ascension 

increases as the Earth turns. Be sure to turn the tracking back on right away, so that the telescope doesn’t 

lose its aim at the planet. You can always repeat the steps in the previous paragraph if you want to make 

sure you’re pointed at Mercury, however.) When you are satisfied that the telescope is aimed correctly, 

press the Send Pulse button to transmit a radar pulse towards the planet. The frequency of the transmitted 

pulse is shown on the lower left of the screen, and should be recorded at the top of the data table on page 

11.  A Pulse Sent message will appear on the screen, along with the estimated time until reception of the 

return pulse. The message appears in yellow when the reflected pulse is returning, and the time appears in 

red during the last 30 seconds until reception.  

 

A window showing the initial spectrum (frequency versus 

intensity) of the pulse also appears on the screen when the pulse 

is transmitted.   This window will minimize itself after 10 

seconds.  When this occurs you will see an animated display on 

the telescope screen.  This display shows the correct positions of 

Mercury, Venus, the Earth, and the Sun on the date of the 

Mercury coordinates you have used. Sketch them in the space 

provided on the next page for further reference. The bright radar 

pulse moves toward Mercury and then the fainter echo returns. 
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(The pulses move at the speed of light relative to the scale of the display. The distances on the display are 

correctly scaled, but the images of the disks of Sun, Earth, and Mercury are much too large for this scale.) 
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Sketch of the Sun, Mercury, Venus, and the Earth 

As seen on your display screen for December 1, 1999 

Label the planets and the Sun 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If for any reason you wish to stop waiting for a return pulse, press Send Pulse again, and respond No to the 

message that appears. While you are waiting for the return pulse, you can calculate d, x, and y for each of 

the time intervals (120, 210, 300, and 390 x 10
-6

 seconds), and write them down on the data table on page 

10. (Refer to the Sky and Telescope reprint and to the later section of this write-up Calculating the 

Rotational Velocity of Mercury from the Data for instructions on how to calculate d, x, and y). 

 

 

 
 

Taking Data 

The return pulse is spread out over a few hundred microseconds in time, due to the curved surface of the 

planet. A series of five windows will appear on your screen when the pulse is received. These windows 

show snapshots of the spectrum of the returning echo beginning at the instant of reception, followed by 

Figure 3 

PULSE SENT AND ECHO 
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another 120 microseconds later, and three more at successive 90 microsecond intervals. These pulse spectra 

show a certain amount of noise, or static, which increases with the later-arriving pulses, since they are 

weaker. Compare the appearance of the received pulse with the initial pulse. You will note that the initial 

pulse, which is of course stronger, appears much smoother and sharper.  The frequency of the peak is the 

change in frequency at time equals zero, ft=0 which can be recorded at the top of the data table on page 

11. 

Clicking the cursor on any visible portion of a data 

window will bring that window to the top for observation 

and measurement. Clicking the down arrow in the upper 

left corner will reduce the window to an icon. An iconized 

window can be re-displayed by double clicking on it. Data 

windows cannot be closed (unless a new radar pulse is 

transmitted), so that they can always be re-measured, if 

necessary. 

 

To make a measurement, simply press and hold the left 

mouse button and move the cursor to the point to be 

measured. When the button is down the cursor becomes a 

cross-hair, and the lateral position of the mouse appears at 

the bottom of the screen as an X coordinate (measured in pixels), and a frequency shift in Hz from the zero 

position. For the sub-radar echo T = 0) you simply measure the central frequency. But for all the other 

delayed echoes, you must measure the positions of the left and right “shoulders” of the plots, the 

frequencies where the intensity just begins to fall off to zero on the side of the shoulder closest to the 

center. These represent echoes from the parts of the planet that are turning towards you and away from you 

the fastest. On some of the spectrum plots these points are quite obvious and on others they are not. 

 

 

 
 

Figure 4 

MEASUREMENT OF THE RETURN ECHOES 
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When you have positioned the vertical cross-hair on the left “shoulder” of the plot, double click the left 

mouse button. A red arrow will appear on the screen, along with the measured position in Hz. To measure 

the right “shoulder”, follow the same procedure. A blue arrow will then appear at the measured position.  If 

you want to change a measurement simply reposition the mouse and again double click the appropriate 

mouse button. The associated arrow will move to the new location. You will want to write down the results 

of all of these measurements on the data sheet included in this write-up.  It’s always good scientific practice 

to keep paper as well as computer records, if possible. 

 

Calculating the Rotational Velocity of Mercury From the Data 
 

You will want to use the following formulas to carry out the steps in transforming your raw data into values 

of the rotation period of Mercury. Make sure you have converted all measurements to the proper units as 

you go along. The first three items are geometrical terms needed to convert the measured velocities, which 

are from points not on the equator of Mercury, into velocities at the equator of Mercury. Since you know 

the anticipated time delays of the four echoes (120, 210, 300, and 390 x10
-6

 sec ) you can calculate these 

items, d, x, and y, even before you have received the echoes. The other calculations are made with data 

measured from the spectrum of the echoes. 

 
 

 

 

 

Mercury’s rotational velocity, V, is calculated form these geometrical relationships. R is the Planet’s 

radios, d, is the delay distance, and V o is the measured component of the rotational velocity parallel to the 

line of sight at the point. 

 

Item 1: Calculating d (in meters). This is the distance the delayed beam has traveled beyond the sub-radar 

point. We simply use distance = rate x time, but since we are measuring an echo, which has to travel over 

the same path twice (down and back) we take half this value. 

 

d = (ct) / 2 
 

Where c is the speed of light in meters per second (3 x 10
8

 meters/sec) and t is the time delay for the 

particular pulse in seconds. (Note that one microsecond = 1 µsec = 10
-6

 seconds). 

 

Item 2: Calculating x. This is the distance parallel to our line of sight from the center of Mercury to the 

point from which the echo comes back. It is just the radius of Mercury minus the distance d calculated in 

item 1, where the radius of Mercury is Rmerc = 2.42 x 10
6

 meters. 

 

x = Rmerc - d 

 

Figure 5 

GEOMETRY OF MERCURY’S ROTATION 
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Note that since the echoes we measure come back from points not far back (only a few kilometers) from the 

sub-radar point, x will be only slightly smaller than Rmerc. 

 

Item 3: Calculating y. This is the distance perpendicular to our line of sight to the extreme outer edge of 

the region of Mercury from which the echo comes back. It is found by noting that y is one side of a right 

triangle whose hypotenuse is the radius of Mercury, and whose other side is x. 

 

y = (Rmerc
 2

 – x
2
)
1/2

 
 

Item 4: Calculating ftotal. This is the shift in frequency due to the rotational velocity alone. You need 

simply note that one side of Mercury that is rotating toward you as fast as the other side is rotating away. 

So the difference in the frequency shifts from the two extremes edges, fright and fleft is twice the shift 

due to rotational velocity. 

ftotal =  (fright – fleft) / 2 

 

Item 5: Calculating fc. This is the shift in frequency corrected for the fact that this is an echo—the shift is 

twice that produced by a source which is simply emitting at a known frequency. This is because the pulse 

arriving at Mercury appears shifted as seen from the surface, and then it is shifted again because the surface 

of Mercury is moving as seen from the earth. 

 

fc =  ftotal 2 
 

Item 6: Calculating Vo. This is the component of the rotational velocity of the edge of Mercury along the 

line of sight at the point from which the echo returns. We simply apply the Doppler equation to the 

observed frequency shift. 

Vo = c(fc / f) 
 

Where, as before, c is the speed of light in meters per second, and f is the unshifted transmitted frequency 

of the pulse (which can be read from the control panel of the radio telescope, but note that f must be in 

Hertz, Hz, not Megahertz. On the telescope display 1 MHz = 10
6

 Hz.) 

 

Item 7: Calculating V. This is the equatorial rotational velocity of the planet Mercury, and is just your 

measured velocity times a geometrical factor Rmerc / y which corrects for the fact that the velocity you 

measure is only the component of the rotational velocity directed along your line of sight, and that the 

component perpendicular to the line of sight produces no measurable Doppler shift. 

 

V = Vo (Rmerc / y) 

Item 8: Calculating Prot. For each of the delayed echoes you can now calculate a rotational period for the 

planet by dividing the circumference of Mercury, 2 Rmerc, by its velocity , and dividing the result (which 

will be in seconds), by the number of seconds in a day: 86,400. 


Prot(seconds) = 2 Rmerc /V 

 

    Prot(days) =  Prot(seconds) / 86,400  
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DATA TABLE 

 

 
Transmitting frequency f = ________ 
 

ft=0 _____________________________ 

 

 



t (seconds) 

 

120x10
-6

 

 

210x10
-6

 

Approximate  

Values For 

210x10
-6

 

 

300x10
-6

 

 

390x10
-6

 

d = (ct) / 2 

 

  

3.15 x 10
4 

  

x = Rmerc - d 

 

  

2.39 x 10
6
 

  

y = (Rmerc
 2

 – x
2
)
1/2

 
 

  

3.89 x 10
5
 

  

fright 

  

 
  

fleft 

  

 
  

ftotal = 

(fright – fleft) / 2 

 

  

1.38 

  

fc =  ftotal 2 
 

  

0.69 
  

Vo = c(fc / f) 
 

  

0.48 
  

V = Vo (Rmerc / y) 
 

  

2.99 
  

Prot(days) = 

(2 Rmerc /V) / 

86,400 

  

58 

  

 

 

Prot  should decrease as ftotal  increases. 
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Final Results 

 

When you have calculated Prot for each of the delayed echoes, make sure your answers are reasonable. 

Then compute an average period of rotation in days for Mercury from your values. 

 

The Rotation Period of Mercury = _________________________ days. 

 

What is the percentage difference between this period and the accepted value of 59 days? 

 

 

 Prot – 59 x 100 =________________% 

    59 

 

The Orbital Velocity of Mercury 

 
You can use your value of frequency shift for the echo from the sub-radar point to calculate the orbital 

velocity of Mercury. Just note that the shift you get must be divided by two to account for the doubling due 

to an echo. Apply the Doppler formula to the shift to calculate the speed of the planet. Negative speeds are 

speeds of recession, and positive speeds are speeds of approach. Show the data you use and the calculations 

below. Express your answer in km/sec (1 km = 10
3

 meters) 

 

Vorbital = c(ft=0 / f)/2 

 

 

Orbital Velocity of Mercury: ______________________________________ 

 

QUESTIONS 
 

1.  Does your answer for the orbital velocity seem reasonable?  Compare your calculated value to the 

average value of Vorbital for Mercury = 48 km/sec.   Is there a missing component of velocity? 

 

 

 

 2.  Look at your sketch of the position of Mercury in relation to the Earth.  How does the relative position 

of Mercury and Earth affect our calculation for Vorbital ? 

 
 

3.  Extra Credit:  The relative sizes of the orbits of the planets were known (from Kepler’s laws) long 

before the actual number of kilometers in an astronomical unit was measured. The delay in the return time 

of a radar signal provides a neat and accurate way of measuring the astronomical unit (AU). Your 

ephemeris calculations, which you recorded on page 6, gave you the distance of Mercury from the earth in 

AU and the measured time for the return pulse in light minutes.  (The time for the return pulse is the time 

for the one-way pulse to travel from Mercury to Earth.)  Use these two values to calculate the number of 

kilometers in an AU. For this purpose, note that c, the speed of light, is 3 x 10
5

  km/sec. Recall that c x t = 

d, and that t needs to be converted into seconds.  Use the t and d you recorded on page 6, and solve to 

show how many kilometers are in 1 AU.  Show your work carefully below.   
 

 

 

 

 


