1. Suppose $(a, b)=1, a \mid c$, and $b \mid c$. Show that $a b \mid c$.

Because $(a, b)=1$ we know that there exist x and y such that $a x+b y=1$. Thus, $a c x+b c y=c$. Now, $b \mid c$ so it follows that $a b \mid a c$ and $a \mid c$ so it follows that $a b \mid b c$, but this implies that $a b$ divides all linear combinations of $a c$ and $b c$ so in particular it must divide $a c x+b c y=c$.

Alternatively, from the hypotheses we know that there exists some integer m such that $c=m a$. Given that $b \mid m a$ and $(b, a)=1$ it follows from class that $b \mid m$. In particular there exists some integer n so that $m=b n$. But now $c=a m=a b n$ and thus $a b \mid c$
5. Prove that if $(a, m)=(b, m)=1$ then $(a b, m)=1$

Assume not. Then there must exist some prime p such that $p \mid(a b, m)$. In particular, this implies that $p \mid m$ and $p \mid a b$. Because p is prime the latter fact implies that either $p \mid a$ or $p \mid b$ (or both). But this in turn implies that either $p \mid(a, m)$ or $p \mid(b, m)$ contradicting our hypothesis.
6. The correct answer to part d was that $\nu\left(p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}\right)=\left(e_{1}+1\right)\left(e_{2}+\right.$ $1) \ldots\left(e_{r}+1\right)$. The answers to parts a-c are just special cases of this formula. This formula can be proven in several different ways.

