Mapping Reducibility.

A function \(f : \Sigma^* \rightarrow \Sigma^* \)

is a **computable function**

if some TM \(M \) on every input \(w \) halts w/ just \(f(w) \) on its tape.

Lang. \(A \) is mapping reducible
to lang. \(B \) (written \(A \leq_m B \))

if there is a computable function
\(f : \Sigma^* \rightarrow \Sigma^* \)
where for every
\(w \in A \Leftrightarrow f(w) \in B \).

\(f \) is called the reduction of \(A \)
to \(B \).

\(A \leq_m B \) and \(A \) is undec. then \(B \) is undec.

If \(A \leq_m B \) and \(B \) is recognizable then \(A \) is recognizable.

If \(A \leq_m B \) and \(A \) is not Turing recognizable, then \(B \) is not Turing recognizable.
http://public.gettysburg.edu/~cpresser/cs301/palindrome.jff

0 .. 23

\text{esson}\ i:\ \text{input}\ i\ \text{and}\ 23-i

\text{input} \text{ of length } i \text{ and } 23-i

\text{how many Times did you hit next.}