Post Correspondence Problem

$$
\begin{aligned}
& (P C P) \\
& \left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\} \\
& {\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]}
\end{aligned}
$$

PCP 15 undecidable
Proof: reduction from $A_{i m}$

P has a match inf M accepts w.
work w/ modified PCP (MPCP)
construct $P^{\prime}(t a$ simulate M on $w)$
For a machine $M\left(Q, \sum, \Gamma, \delta, q_{0}\right.$, pace, gros $)$
on impact $w=w_{1} w_{2} \ldots w_{n}$

1. Starting domino

$$
\#
$$

2. Transitions that move Right

$$
\forall a, b \in \Gamma_{\sum_{0}^{\text {and }} \neq q_{\text {res }}} \in Q_{\text {where }}
$$

if $\delta(q, a)=(r, b, R)$
add $\left[\frac{q a}{b r}\right]$ to p^{\prime}
3. Transitions to the Left

$$
\begin{aligned}
& \text { ansitions to the Left } \\
& \forall a, b, c \in\left\{\begin{array}{l}
\text { q, } r \in Q \\
r_{\phi}^{\prime} \neq q_{c, j}
\end{array}\right. \\
& \text { if } \delta(q, a)=(r, b, L) \\
& \text { add }\left[\frac{c q^{a}}{r c b}\right] \text { to } P^{\prime}
\end{aligned}
$$

4. Other parts of the tape

$$
\forall a<\Gamma
$$

$$
\begin{aligned}
& \text { er parts of the lase } \\
& \forall a<\prod_{\text {add }}\left[\frac{a}{a}\right] \text { to } p^{\prime}
\end{aligned}
$$

5. add $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{U \#}\right]$ to P^{\prime}
qa\# bra\#
6.

$$
\begin{aligned}
& \forall a \in \Gamma \\
& \qquad\left[\frac{a q_{a c c}}{q_{a c e}}\right] \text { and }\left[\frac{q_{\text {aces }} a}{q_{\text {ace }}}\right]
\end{aligned}
$$

$$
\text { 7. }\left[\frac{q_{\text {ace }} \# \#}{q_{a c c} \#}\right]
$$

Convert $M P C P, P^{\prime}$ to $P C P, P$ force am pl to start w/ P^{\prime} start domino

$$
\begin{aligned}
A u & =* u_{1} * u_{2} * \ldots * u_{n} \\
u \notin & =u_{1} * u_{2} * \ldots * u_{n} * \\
A u t & =* u_{1} * u_{2} * \ldots * u_{n} *
\end{aligned}
$$

for the start tile in $P^{\prime}\left[\frac{t_{s}}{b_{s}}\right]$
add $\left[\frac{A t_{s}}{\left\langle b_{s} K\right.}\right]$ to P
for all other tiles in $P^{\prime}\left[\frac{t}{b}\right]$ add $\left[\begin{array}{l}\frac{k t}{b t}\end{array}\right]$ to P
add

$$
\left[\frac{\star \Delta}{\diamond}\right] \text { to }_{0} P
$$

Dominos for $P^{\prime}-\operatorname{sim} M$ on $w=101$

1. $\left[\frac{\#}{\#_{q_{0}} w_{1} . . w_{n} \#}\right] \Rightarrow\left[\begin{array}{l}\# \\ \# q_{0} / \overline{O \mid} \#\end{array}\right]$
2. Right

$$
\left[\frac{\frac{q_{0}}{1 q_{0}}}{\text { Right }}\right]\left[\frac{q_{1} 1}{\sqrt[q_{1}]{q_{1}}}\right]\left[\frac{q_{1} 0}{O q_{1}}\right]\left[\frac{q_{2}}{} 1\right.
$$

$$
\left.\begin{array}{l}
\text { 3. Left } \\
{\left[\frac{0 q_{1}}{q_{2} O \omega}\right]\left[\frac{1 q^{\omega}}{q_{2}} 1 \omega\right.}
\end{array}\right]\left[\frac{\omega}{q_{1}} \frac{q_{2}}{q_{2}} \omega\right] .
$$

