LBA - CSL

$\alpha A\beta \rightarrow \alpha X\beta$

$\alpha, q_1, q_2, q_3, q, a_4, a_5, a_6$

M is an LBA w/ q states γ symbols and input is length n

distinct config. = $q \cdot n \cdot \gamma^n$
Computational Histories
- sequence of configurations

Accepting Comp. History
$C_1, C_2, C_3, \ldots C_l$

a) C_i: initial configuration
b) C_l: accepting configuration
c) each C_i follows from C_{i-1} according to transitions of M.
\[A_{LBA} = \{ <m, w> \mid M \text{ is a LBA that accepts string } w \} \]

\[A_{LBA} \text{ is decidable } \]

\[L = \text{on input } <m, w> \]
 1. run \(M \) on \(w \) for \(\geq n^3 \) steps, or until \(M \) halts.
 2. If \(M \) accepts, accept
 Else reject (loops forever)
$$E_{LBA} = \{ <M> | \text{M is an LBA and } L(M) = \emptyset \}$$

is not decidable

Proof (reduction from ATM)

Suppose \(E_{LBA} \) is decidable

decider R, ATM

Construct B such that \(L(B) \neq \emptyset \)
iff M accepts w.

LBA B recognizes all accepting computational histories of M on input w.

\(B \) on input \(\#C_1\#C_2\#C_3\# \ldots \#C_q\# \)
where \(C_i \) is a configuration of M

1. Check if \(C_q \) is the initial configuration of M on w.
 \(e.g., \quad w, \overline{w}, w, \overline{w}, \ldots, \overline{w} \)
2. Check if \(C_q \) is an accepting config. of M on w.
3. For each pair \(C_i, \#C_{i+1} \) check that \(C_{i+1} \) follows from \(C_i \) given M.

\(w, \overline{w}, \ldots, w_k, \overline{w}, \ldots \)

if \(L(B) \) is empty, then there are no accepting comp. histories for M on w.
if \(L(B) \) is not empty, then there is some accepting comp. histoy.

\(S = \) on input \(<M, w> \)

1. Construct LBA B as described.
2. Run R on \(<B, w> \).
3. If R rejects, accept.
 If R accepts, reject.