Reducibility

Problem A reduces to problem B

If A is reducible to problem B and B is decidable, then A is decidable.

If A is reducible to B and A is not decidable, then B must be undecidable.
$\text{HALT}_{TM} = \{<m,w>| M \text{ is a TM and } M \text{ halts on input } w\}$

HALT_{TM} is undecidable:
proof (by contradiction)
Suppose HALT_{TM} is decidable
and TM R decides it.

Construct S to decide A_{TM}.

S: on input $<m,w>$
1. Run R on $<m,w>$
2. If R rejects, reject
3. If R accepts, simulate M on w until M halts.
4. If M accepts, accept
 otherwise, reject
$E_{TM} = \{ \langle m \rangle \mid M \text{ is a TM and } L(m) = \emptyset \}$

E_{TM} is undecidable

Proof (by contradiction)

Suppose it isn't. So TM R decides E_{TM}.

Given M, w create TM M'

M' = on input x
1. if x ≠ w, reject.
2. if x = w, run M on w and accept if M accepts.

$L(M') = \{ w \} \text{ if M accepts } w$
$L(M') = \emptyset \text{ otherwise.}$

$L(M') \neq \emptyset \text{ if M accepts } w.$

Construct S that decides A_{TM}.
S = on input $\langle M, w \rangle$
1. Use M, w to build M'
2. Run R on M'
3. if R accepts, reject.
 if R rejects, accept.
\[EQ_{TM} = \{ \langle m_1, m_2 \rangle \mid \text{TM's } m_1 \text{ and } m_2 \text{ and } L(m_1) = L(m_2) \} \]

Reduction from \(E_{TM} \)

\(E_{TM} \)

\(\langle m \rangle \)

\(\langle m, N \rangle \)

\(EQ_{TM} \)

\(\text{acc} \)

\(\text{rej} \)

\(\text{rej} \)

\(\text{accept} \)

\(\text{reject} \)

\(TM \text{ N rejects everything} \)

\(L(N) = \emptyset \)
not Rec

CSG
\[\alpha A \beta \Rightarrow \alpha X \beta\]

A is a var
\(\alpha, \beta, X\) are strings
\(X \neq \varepsilon\)