$$
\begin{aligned}
& {\left[\frac{q_{a c c} \#}{}\right]\left[\frac{q_{a c c} \# \#}{\#}\right]} \\
& {\left[\frac{\#}{\# q_{0}|O| \#}\right]} \\
& {\left[\frac{q_{0} 1}{\mid q_{1}}\right]\left[\frac{0}{0}\right]\left[\frac{1}{1}\right]\left[\frac{\#}{\#}\right]}
\end{aligned}
$$

if positive integar $<$ and
no s.t. $\forall n \geqslant n$ 。 $f(n) \leq c \cdot g(n)$
e.9.

$$
\begin{gathered}
f(n)=5 n^{4}+6 n^{2}-2 n+1000 \\
f(n) \text { is } O\left(n^{4}\right) \\
O\left(n^{5}\right) \\
O
\end{gathered}
$$

$$
\begin{aligned}
& O(1) O(\log n) O(n) O(n \log n) O\left(n^{n}\right) \\
& O(n!) ? O\left(2^{n}\right) \\
& O\left(n^{n}\right)
\end{aligned}
$$

$$
L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

$O\left(n^{2}\right) T M$ mark O, mark 1, repeat
$O(n) \quad 1$. mark every other 0,1
$O(n)$ a check if even \# of unmarked repeat $O(\log n)$ times
$O(n \log n)$
TM 3 - two tapes
$O(n)$ 1. copy input to tape 2
$O(n)$ 2. check Tape 1 for a one check tape 2 for a zero
$O(n)$

TIME:

$$
\begin{aligned}
& t: \mathbb{N} \rightarrow \mathbb{R}^{+} \\
& T / M E(t(n))
\end{aligned}
$$

is the collection of all languages that are decidable by a $O(t(n))$ tine $T M$.
single tape, deterministic

Let $t(n)$ be a function where $t(n) \geq n$.
every $t(n)$ Time mult:-tape TM has an equiv. $O\left(t^{2}(n)\right)$ single tope TM.

1 step in $M=$
$O(n)$ in M^{\prime}

Non-det TM t(n) single tape
$($ det $)$ $2^{O(t(n))}$

