Decidable

Does a DFA, B, accept a string w?

\[A_{\text{DFA}} = \{ <B, w> \mid \text{B is a DFA that accepts string w} \} \]

\[A_{\text{DFA}} \] is decidable.

Proof: construct TM, M that decides \[A_{\text{DFA}} \]

M: on input \(<B, w>\)

1. Simulate B on input w.
2. If the simulation ends w/ B accepting w, accept
 otherwise reject.
\[A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts str. } w \} \]

\[A_{NFA} \text{ is decidable} \]

\[N : \text{on input } \langle B, w \rangle \]

1. Convert \(B \) to a DFA, \(C \)
2. Run \(M \) on input \(\langle C, w \rangle \) (\(M \) from \(A_{DFA} \))
3. If \(M \) accepts, accept; else reject.

\[
\text{boolean } \text{NFA-is-decidable}(\text{NFA } n) \}
\]
\[
\text{DFA } d = \text{nfa2dfa}(n);
\]
\[
\text{return } \text{DFA-is-decidable}(d);
\]

```
N:
\langle B, w \rangle
```
\[E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \]

T: on input \(\langle A \rangle \) where

1. Mark the start state.
2. Repeat 3 until no new states are marked.
3. Mark any state that has a transition coming from a marked state
4. If no final state is marked, accept.
 Otherwise, reject.
\[\text{EQ}_{\text{DFA}} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFA's s.t. } L(A) = L(B) \} \]

\text{EQ}_{\text{DFA}} \text{ is decidable.}

Construct DFA \(C \) s.t. \(C \) accepts strings accepted by \(A \) or \(B \), but not both.

\[
L(C) = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right)
\]

\[L(C) = \emptyset \text{ iff } L(A) = L(B) \]

\text{TM } F = \text{ on input } \langle A, B \rangle \text{ where } A, B \text{ are DFA's}

1. Construct \(C \) (as above).
2. Run TM \(T \) on input \(\langle C \rangle \) (\(T \) accepts \(E_{\text{DFA}} \)).
3. If \(T \) accepts, accept; Else reject.
\[A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates } w \} \]

\[A_{CFG} \text{ is decidable if } G \text{ is in Chomsky Normal Form, any derivation has } 2n-1 \text{ steps (} n=|w|). \]

Every rule is of the form

- \[A \to BC \]
- \[A \to a \]
- \[S \to \epsilon \]

1. Convert \(G \) to C.N.F.
2. List all derivations up to length \(2n-1 \)
3. If \(w \) is derived, accept
 Else, reject.