

Regular language DFA/NFA nerept Regular expressions

$$
\begin{aligned}
& \cdot, U_{1}^{*} \\
& (a \cup b) \cdot b \cdot a^{*}\left\{\begin{array}{l}
a b a a a \\
a b \\
b b o a \\
b b
\end{array}\right.
\end{aligned}
$$

R is a regular expression if Res:

1. a for some $a \in \sum$
2. ε-empty string
3. \varnothing - no string
4. $\left(R, \cup R_{2}\right) \quad R_{1}, R_{2}$ are reg. exp.
5. $\left(R_{1} \circ R_{2}\right)$
6. R_{1}^{*}
R. reg. exp
$A \cup B C^{*}$
precedence order $*, 0, U$

$$
R^{+}=R R^{*}
$$

\sum^{*} any string over \sum
$R^{k}=k$ occurrences of R
$L(R)$ language defined by R
contain exactly 1 a $\sum=\{a, b\}$

$$
b^{*} a b^{*}
$$

contains string aba

$$
\begin{gathered}
(a \cup b)^{*} a b a(a \cup b)^{*} \\
\Sigma^{*} a b a \Sigma^{*}
\end{gathered}
$$

even a 's
odd a's

$$
\underbrace{\left(b^{*} a\left(b^{*} a b^{*}\right)^{*}\right.}_{a^{\prime} s}
$$

$$
\begin{aligned}
& 1^{*} \varnothing=\varnothing \\
& 1^{*} 0 \varepsilon=1^{*} \\
& \varnothing^{*}=\{\varepsilon\} \\
& R \cup \varnothing=R
\end{aligned}
$$

A language is regular if and only if some regular expression defines it.
I. If a language is described by a regular expression, then it ${ }^{2}$ is regular.
Suppose R is a regular expression. Show $L(\mathbb{R})$ is regular.
construct an NFA that recognizes $L(R)$
6 cases:
14. $R=9$ for some $a \in \sum$

$$
L(R)=\{a\}
$$

$$
\text { 2. } R=\Sigma
$$

3. $R=\varnothing$

4. $R=R_{1} \cup R_{2}$

5. $\left.R=R_{1} \circ R_{2}\right\}$ see other
6. $R=R_{1}^{*} \quad$, constructions

$$
(a+b) c^{\lambda}
$$

