a, b → c
\[L_1 = \{ w \mid w \text{ has more } a\text{'s than } b\text{'s} \} \]

\[w \in \{a, b\}^* \]

\[L_2 = \{ w \mid w \in \{a, b\}^* \text{ w has the same number of } a\text{'s as } b\text{'s} \} \]

- stack:
Pumping Lemma for CFL's.

\[V \Rightarrow uVw \quad u, w : \text{strings of} \]
\[\Rightarrow uuVww \quad \text{vars and terms.} \]

If \(A \) is a context free language, then there is a number \(p \) (the pumping length) where, if \(s \in A \) of length at least \(p \), then \(s \) may be divided into 5 pieces,

\[s = uvxyz \quad \text{satisfying the conditions:} \]

1. for each \(i \geq 0 \) \(uv^ixy^iz \in A \)
2. \(|vy| > 0 \)
3. \(|vxy| \leq p \)
$L = \{a^n b^n c^n \mid n \geq 0\}$ is not a CFL.

Proof by contradiction

Suppose L is context free.

Let p be the pumping length.

Choose a string $s = a^p b^p c^p$.

So s can be split into 5 pieces, $s = uvxyz$ according to the pumping lemma, because $s \in L$ and $|s| \geq p$.

Since $|vxy| \leq p$, there can be at most 2 symbols in vxy.

Therefore $u v^2 x y^2 z$ would have more of one or two symbols than the third so $u v^2 x y^2 z \notin L$, which is a contradiction.

$\therefore L$ is not a CFL.