ε - no input
q_0 on 1 to $\{q_0, q_2\}$
q_0 on 0 to $\{q_0, q_2\}$
q_0 on 0?
input: 0011
starts w/ 0

even # of 1's
NFA: \((Q, \Sigma, \delta, q_0, F)\)

1. \(Q\): set of states
2. \(\Sigma\): alphabet
3. \(q_0 \in Q\)
4. \(F \subseteq Q\)
5. \(\delta: Q \times \Sigma \epsilon \rightarrow P(Q)\)

\[\Sigma_\epsilon = \Sigma \cup \{\epsilon\}\]
Every NFA has an equiv. DFA

Let \(N = (Q, \Sigma, \delta, q_0, F) \) be an NFA recognizing some language \(A \).

Construct DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

consider \(N \) w/ no \(\varepsilon \)-transitions

1. \(Q' = P(Q) \)
2. \(\Sigma \)
4. \(q_0' = \{ q_0 \} \)
5. \(F' = \{ R \in Q' : R \text{ contains an accepting state of } N \} \)
3. \(\delta' \) for \(R \in Q' \) and \(a \in \Sigma \)

\[
\delta'(R, a) = \{ q \in Q : q \in \delta(r, a) \text{ for some } r \in R \}
\]
\(\varepsilon \text{-Transitions} \)

\[E(R) = \{ q \mid q \text{ can be reached from } R \text{ by following any number of } \varepsilon \text{-transitions} \} \]

3. \(\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(R, a)) \text{ for some } r \in R \} \)

4. \(q_0' = \{ E(q_0) \} \)