$$
\begin{aligned}
& R_{1}(0,4) \\
& R 2(2,7)
\end{aligned}
$$

pos:

$$
\begin{aligned}
& \frac{111010,100000}{R^{2} \cdot y R^{2 . X} R 1 \cdot y R 1 . X} \\
& \begin{array}{l}
0000000011 \\
\times 1=p 05 \& 07
\end{array} \\
& y \mid=(\operatorname{pos} \& 070) \gg 3 \\
& 000 \underbrace{00011,1000}_{\begin{array}{l}
070 \\
0 \times 38 \\
56
\end{array}}
\end{aligned}
$$

$$
\frac{\text { Memory Access }}{\text { Random }} \text { Direct }
$$

RAM
static $\underset{(S R A M)}{\text { RAM }}$ flip flops
Dynamic RAM (DRAM) 清愫 -refresh

ROM

$\frac{c h i p}{\text { ROM }}$	$\frac{\text { rewrite }}{\text { no }}$	$\frac{\text { write }}{\text { no }}$
PROM	no	once
EPSOM	yes	yes
EEPROM	yes (but). yes	
FLASH	yes (blok) yes	

cache hit
\longrightarrow found the odder in the cache
cache miss
\rightarrow get block from main memory (put in cache)
\rightarrow access cache
write policies
$\frac{\text { write through }}{-w r i t e ~ v a l u e ~ t o ~ m a i n ~}$ - write vale to main
mem. when changed in
cache
write back

- when block is going to be replaced

Direct Mapped Cache
cache index $=$ mem. add \% cache lines

Memory Sire: 2^{32}
Cache: 512 lines
Block size: 4 words (16 Bytes)

