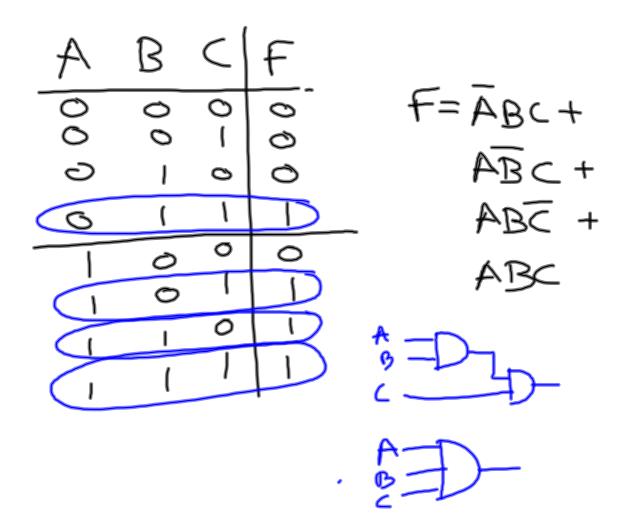
AND: AB

OR: A+B Not: Ā

| A   | B          | A+13 | ATB       | A | B   | <del>AB</del> |
|-----|------------|------|-----------|---|-----|---------------|
| 0   | $\bigcirc$ | 0    | ı         | ( | ١   | 1             |
| 0   | 1          | l    | 0         | ſ | 0   | Ö             |
| l   | 0          | ١    | 0         | 0 | 0 - | 0             |
| I   | ١          |      | 0         | 0 | 0   | 0             |
|     |            | •    |           |   | J   |               |
| (A- | + R 1      |      | $\bar{A}$ | R |     |               |

$$\frac{A+B}{AB} = \overline{A} + \overline{B}$$

$$\frac{AB}{AB} = \overline{A} + \overline{B}$$


$$\frac{AB}{AB} = \overline{A} + \overline{B}$$

$$\frac{AB}{AB} = \overline{A} + \overline{B}$$

| A | B      | C       | Bc      | 4 | A+BC | Q<br>A+B     | A)   | (Va) |
|---|--------|---------|---------|---|------|--------------|------|------|
| 0 | 00     | 0       | 0 0     |   | 00   | 0 0          | 0 -  | 00   |
| 0 | (<br>( | 0       | 0       |   | 0 -  | 1            | 0    | 0    |
|   | 0011   | 6 1 6 1 | 0 0 0 - |   | (A:  | , , <u> </u> | (A + |      |

$$\frac{AB}{AB} = \frac{f_1 f_2}{f_1 - 0} = \frac{f_1 f_2}{f_2 - 0} = \frac{AB}{AB}$$

$$F = AB + AB$$



AND/OR/NOT computationally complete set of operators NAND gate create AND, QR, NOT NOT: A=A  $\overrightarrow{AA} = \overrightarrow{A}$ AND:  $\overrightarrow{AB} = \overrightarrow{\overline{AB}}$  $\overline{AB} = \overline{A} + \overline{B}$  $OR: A + B = \overline{A}\overline{B}$ A+B=AB