$$
\begin{aligned}
& \text { lusr/local/bin/bullet } \\
& \text { /usr/local/src/bullet- } 2.77
\end{aligned}
$$

$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$ pos
vel

$$
x\left(f_{2}\right)=x\left(f_{1}\right)+v\left(F_{1}\right) \cdot[l t
$$

$$
\left.\begin{array}{c}
\frac{d^{n} x(t)}{d t^{n}}=f\left(t, x(t), \frac{d x(t)}{d t}\right. \\
\frac{d^{2} x(t)}{d t^{2}},
\end{array}, \cdots\right), ~ \$
$$

r : position Varlet integration

$$
\begin{aligned}
r\left(t_{1}+\Delta t\right) & =r\left(t_{1}\right)+\dot{r}(t) \Delta t \\
& +\frac{1}{2} \ddot{r}\left(t_{1}\right) \Delta t^{2}+\frac{1}{6} \ddot{r}\left(t_{1}\right) \Delta t^{3} \\
& +O\left(\Delta t^{4}\right) \\
r\left(t_{1}-\Delta t\right)= & r_{1}(t)-\dot{r}\left(t_{1}\right) \Delta t+\frac{1}{2} \ddot{r}(t) \Delta t^{2} \\
& -\frac{1}{6} \ddot{(}\left(t_{1}\right) \Delta t^{3}+O\left(\Delta t^{4}\right) \\
r\left(t_{1}+\Delta t\right) & +r\left(t_{1}-\Delta t\right) \\
r\left(t_{1}+\Delta t\right) & =2 r_{1}(t)-r\left(t_{1}-\Delta t\right) \\
& +\ddot{r}\left(t_{1}\right) \Delta t^{2}+O\left(\Delta t^{4},\right.
\end{aligned}
$$

t_{0}, t_{1}, t_{2} are frames $t_{2}=t_{1}+\Delta t$

$$
r\left(t_{2}\right)=2 \cdot r_{1}\left(t_{1}\right)-r\left(t_{t_{1}}-\Delta t\right)
$$

$$
\begin{aligned}
& f=m a \\
& a=\frac{F}{m}
\end{aligned}
$$

