Physics - rigid body dynamic

Linear Dynamics

$r(t)$ position over time m

$$
v(t) \text { velocity }
$$

$a(t)$ accel.

$$
\mathrm{m} / \mathrm{s}^{2}
$$

Fo ce

$$
\begin{aligned}
& F(t)=m \cdot a(t) \\
& F_{n a t}(t)=\sum_{i=1}^{N} F_{i}(t) \\
& p(t)=m \cdot v(t) \\
& F(t)=\frac{d p}{d t}
\end{aligned}
$$

$$
\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2},
$$

(Nations)
mon en

$$
r(t .)
$$

Δt : time since last frame

$$
r\left(t_{2}\right)=r\left(t_{1}\right)+v\left(t_{1}\right) \Delta t
$$

Forces
gravity spring friction explosion

$$
\begin{aligned}
& F_{\text {net }}=m \cdot a(t) \\
& u\left(t_{2}\right)=\frac{F_{n c t}}{m} \\
& v\left(t_{2}\right)=v\left(t_{1}\right)+a\left(t_{4}\right) \Delta t
\end{aligned}
$$

Explicit Euler

