Schedules: lists of operations

- operations can be interleaved
- ops from same transaction must be in same order in schad. as transaction

with draw: $T_{1}: r_{1}(x) w_{1}(x) C_{1}$
Transfer: $T_{2}: r_{2}(y) w_{2}(Y) c_{2}(x) w_{2}(x) c_{2}$

$$
\begin{aligned}
& S_{a}: r_{2}(y) w_{2}(y) r_{1}(x) w_{1}(x) r_{2}(x) w_{2}(x) \\
& S_{b}: r_{2}(y) w_{2}(y) r_{1}(x) r_{2}(x) w_{1}(x) w_{2}(x) \\
& T_{1}: x=500 \\
& T_{2}: x=\begin{array}{|}
80660 \\
X: \sqrt{500} \mid
\end{array} \\
& \text { correct } \\
& T_{1}:{ }^{\circ} 100 \\
& \begin{array}{c}
x+\sqrt{500} \\
550
\end{array} T_{2}: \begin{array}{c}
\operatorname{trans} 0^{\circ} \\
150
\end{array}
\end{aligned}
$$

Conflicting operations
Two ops conflict

1. The ops are in different transactions
2. They access the same item X.
3. at least 1 op is a write

Schedule is recoverable
if no Transaction T commits until all transactions T^{\prime} that write some value that T
_ - later reads have committed.

$$
\begin{aligned}
& T^{\prime} \ldots w_{T^{\prime}}(x) \ldots \\
& T \quad \cdots \quad \cdots r_{T}(x) \\
& \text { S: } \quad w_{T} \cdot(x) \ldots . r_{T}(x) \quad c_{T} a_{T^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { cascade rollback } \\
& \text { rollback } T^{\prime} \text { causes } \\
& \text { rollback } T
\end{aligned}
$$

cascade less

- every transaction reads only items from transactions that have committed.

