\[EQ_{TM} = \{ <m_1, m_2> \mid m_1, m_2 \text{ are TM and } L(m_1) = L(m_2) \} \]

\[EQ_{TM} \text{ is undecidable} \]

proof by contradiction:
assume \(EQ_{TM} \) is decidable
by \(TM, R \).
Show that \(E_{TM} \) is decidable
(which is a contradiction)

Construct \(S \): on input \(<m> \)

1. Run \(R \) on input \(<m, m> \)
 where \(m \) is a TM that
 rejects all input.

2. If \(R \) accepts, accept.
 If \(R \) rejects, reject.

So \(S \) decides \(E_{TM} \) which
is a contradiction.

Therefore, there is no decider
for \(EQ_{TM} \).
Configurations
101100g, 10110

Computational history
Sequence of configs
C₁, C₂, C₃, ... Cₗ

Accepting comp. history
a) C₁ is start config.
b) Cₗ is an accept config.
c) each Cᵢ follows from Cᵢ₋₁ according to rules for M.
Linear Bounded Automata (LBA)
- like a TM
- tape is only as long as the input.

LBA's accept CSLs

can decide \(A_{DFA}, A_{CFG}, E_{DFA}, E_{CFG} \)

\(M \) is a LBA

\(q \) states
\(\sigma \) symbols
\(n \) input length

There are exactly \(q \cdot n \cdot \sigma \)

distinct configurations

\(A_{LBA} \) is decidable
\(E_{LBA} \) is undecidable
\[\log_2 101 \rightarrow 100_2 \rightarrow \log_2 101 \]
Post Correspondence Problem (PCP)

given

\[
\begin{align*}
\left[\frac{b}{ca} \right] & , \left[\frac{a}{ab} \right] , \left[\frac{ca}{a} \right] , \left[\frac{abc}{c} \right] \\
\left[\frac{a}{ab} \right] & , \left[\frac{b}{ca} \right] , \left[\frac{ca}{a} \right] , \left[\frac{a}{ab} \right] , \left[\frac{abc}{c} \right] \\
\end{align*}
\]

\[abc \cdot a \cdot a \cdot abc\]