$$
E Q_{\operatorname{Tm}_{m}}=\left\{\left\langle m_{1}, m_{2}\right\rangle \mid m_{1}, m_{2}\right. \text { are }
$$

$$
\text { TM and } \left.L\left(M_{1}\right)=L\left(m_{2}\right)\right\}
$$

$E Q_{\text {Tm }}$ is undecidable proof by contradiction:
assume $E Q_{T m}$ is decidable by $T M, R$.
Show that $E_{T m}$ is decidable (which is a contradiction)

Construct S : on input $\langle m\rangle$

1. Run R on input $\left\langle M, m_{1}\right\rangle$ where M, is a TM that rejects all input.
2. If R accepts, accept. If R rejects, reject.
So S decides $E_{T m}$ which is a contradiction.
Therefore there is no decider for $E Q_{T m}$.
configurations

$$
10110 q_{3} 10110
$$

computational history sequence of contios

$$
C_{1}, c_{2}, C_{3}, \ldots c_{2}
$$

$\frac{\text { Accepting comp. history }}{\text { a) }}$
a) C_{1} is start confif.
b) C_{l} is an accept config
c) each C_{i} follows from C_{i-1} according to rules for M.

Linear Bounded Automate (LBA)

- like a TM
- tape is only as long as the input.

$$
\begin{aligned}
& \text { LBA; accept CSLs } \\
& \text { can decide } A_{\text {DFA }}, A_{C F G}, \\
& M \text { is a } L B A \\
& q \text { states } \\
& g \text { symbols } \\
& g \text { Eff }
\end{aligned}
$$

$$
n \text { input length }
$$

There are exactly $q \cdot n \cdot g^{n}$ distinct configurations
$A_{\text {LEA }}$ is decidable
$E_{\text {LBA }}$ is undecidable

$$
10 q_{2} 101 \rightarrow 100 q_{3} 01 \rightarrow 10 q_{2} 101
$$

Post Correspondence Problem

$$
(P C P)
$$

given $\left.\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right] \cdot\left[\frac{[a}{a}\right)\right]\left[\frac{a b c}{c}\right]\right\}$

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]
$$

abcaaabc

