Problem Reduction

Convert one problem to another

A reduces to B
we can use solution of B
to solve A

if A is reducible to B
and B is decidable,
then A is decidable.

if A is undecidable and
reducible to B then
B is undecidable.
\[\text{HALT}_{TM} = \{ \langle m, w \rangle \mid M \text{ is a TM that halts on } w \} \]

\text{HALT}_{TM} \text{ is undecidable}

proof by contradiction

Suppose \text{HALT}_{TM} \text{ is decidable w/ TM R}

Construct a TM S to decide \text{A}_{TM} using R.

\[S = \text{on input } \langle m, w \rangle \]

1. Run R on input \langle m, w \rangle.
2. If R rejects, reject.
3. If R accepts, we know M accepts w or M rejects w.
 - Simulate M on w.
 - If M accepts, accept.
 - Otherwise reject.

So S decides \text{A}_{TM}.

However, \text{A}_{TM} \text{ is undecidable so R does not exist.}

Reduced \text{A}_{TM} to \text{HALT}_{TM}
$$E_{TM} = \{\langle m \rangle \mid m \text{ is a TM and } L(m) = \emptyset \}$$

E_{TM} is undecidable by reduction from A_{TM}

Proof by contradiction
Suppose E_{TM} is decidable by T.M. R.

Given m, w create M'

M' on input x
1. if $x \neq w$ reject
2. if $x = w$ run M on w and accept if M accepts

Construct S to decide A_{TM}

S on input $\langle m, w \rangle$
1. use description of M and w to build M' (as above).
2. run R on $\langle M' \rangle$
3. if R accepts, reject.
 if R rejects, accept.