$$
\begin{aligned}
& 3 \text {-SAT } \\
& \int_{3 \text { CNF }}\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{1} \vee x_{4}\right) \wedge(\quad)
\end{aligned}
$$

3SAT $=\{|\phi| \mid \phi$ is a satisfiable 3 cnf formula $\}$

3-SAT is poly time reducible to CLIQUE

$$
3-\text { SAT } \leq_{P} \text { CLIQUE }
$$

$\mathcal{L I Q U E}=\{\langle G, k\rangle \mid G$ is an undir. graph w/ a clique of size $k\}$

$$
\begin{gathered}
\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \\
\wedge\left(a_{k} \vee b_{k} v c_{k}\right)
\end{gathered}
$$

construct $\langle G, k\rangle$

- graph has k groups of 3 nodes each
- edges in G between all pairs of nodes except 1. nodes in the same group 2. netwendes w/ contradicietery labels eeg. x and x

$$
\begin{aligned}
\phi= & \left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge \\
& \left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{2}\right) \wedge \\
& \left(\bar{x}_{1} \vee x_{2} \vee x_{2}\right)
\end{aligned}
$$

ϕ is sat:fiable iff
G has a k-clique.
I. suppose ϕ is satisfiable -each term has at least one true literal.

- select the nodes that represent \#hese 1 iteral
- Thev nodes form a k-clique
II. Suppose G has a k-clique
-no two node of the clique occur in the same group
-each of the k groups contains exactly one node of the k-cl:que.
- assign values to the variables so the literal labelling the node is true. os $X \rightarrow x:=f$
-that assignment satisfies ϕ

A language B is NP Complete if it satisfies taro conditions:

1. B is in NP.
2. every language A in NP is polynomial time reducible to B.

If B is NP-C and B is in P then $P=N P$.

If B is in NPC and $B \leq_{P} \subset$ for \subset in $N P$, then \subset is NP-C.

Cook-Levin Thm: SAT is NP-Complete.

Suppose A is in NP.
so A is decided by

