The class NP:

A language is in NP if and only if it is decided by some non-deterministic polynomial time Turing machine.

A verifier for a language \(L \) is an algorithm \(V \), where
\[
L = \{ \ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \ (\text{certificate}) \}.
\]

A polynomial time verifier, is a verifier that runs in polynomial time in the length of \(w \).

NP - class of languages that have polynomial time verifiers. ("Easy to check")

\[
\text{HAMPATH} \quad \text{ verifier } V
\]

\[V \left(\langle G, s, k \rangle, P \right)\]

Checking possible path

Is \(P \) a Hamiltonian path in \(G \) that starts at \(s \) and goes to \(k \)?
CLIQUE - in an undir. graph is a subgraph, where every two nodes are connected by an edge.
CLIQUE = \{ (G, k) \mid G \text{ is an}\}
\text{undirected graph w/ an}\}
\text{clique of size k}\}
(\text{k-clique})

CLIQUE is in NP
2 methods of proof
I. give a polynomial time verifier.
II. give a non-det. polynomial time decider.

I. Construct a verifier \(V \) w/ a clique \(c \) as the certificate.

\[V = \text{on input } \langle \langle G, k \rangle, c \rangle \]

\(O(k) \) 1. Test if \(c \) is a set of \(k \)-nodes

\(O(k^2) \) 2. Test if \(G \) contains all edges connecting nodes in \(c \).

3. If both tests pass, accept otherwise, reject
II. construct a Non det. TM that runs in polynomial time that decides CLIQUE

T= on input \(\langle G, k \rangle \) where

- \(G \) is an undirected Graph and
- \(k \) is a number.

1. non-deterministically select a subset \(C \) of \(k \) nodes in \(G \).
2. Test whether \(G \) contains all edges connecting nodes in \(C \).
3. if yes accept, if no reject.
\text{SUBSET-SUM} = \left\{ <S,t> \right\}

S = \{ x_1, \ldots, x_k \} \quad \text{and for}

\text{some} \quad \{ y_1, \ldots, y_e \} \subseteq S

\text{we have} \quad \sum_{i=1}^{e} y_i = t

\text{power set} \quad P(S) \text{ or } 2^S

I. Construct a verifier \(V \) on input \(\langle \langle S, t \rangle, c \rangle \)

1. Test if \(c \subseteq S \).
2. Test if \(c \) sums to \(t \).
3. If both pass, accept.
 Otherwise, reject.