\(f(n) = \Theta(g(n)) \)

if \(\text{pos. int } c \) and \(n_0 \)
exist such that for every \(n \geq n_0 \)
\(f(n) \leq c \cdot g(n) \)
\[f(n) = 5n^3 + 2n^2 + 3n + 6 \]

\[f(n) \text{ is } O(n^3) \]
\[\text{is } O(n^4) \]
\[\text{is } O(2^n) \]
\[\text{is not } O(n^2) \]
\[f(n) = \sigma(g(n)) \]

\[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]
\[A = \{0^k1^k \mid k \geq 0 \} \quad |w| = n \]

\[M_1 = \text{on input string } w \]

O(n)
1. scan tape and reject if we find a \(\emptyset \) after a 1

\[O(n^2) \]
2. repeat if there are both 0s and 1s on the tape.

\[O(n) \]
3. \(\rightarrow \) cross of a 1 and a 0

\[\alpha_n \]
4. if 0s but no 1s \(\rightarrow \) reject

\[0(n) \]
if 1s but no 0s \(\rightarrow \) reject

\[O(n^2) \]
otherwise accept.
\textsf{TIME}:

let $t : \mathbb{N} \rightarrow \mathbb{R}^+$

The Time complexity class $\textsf{TIME}(t(n))$ is the collection of all languages that are decidable by some $O(t(n))$ time TM.

so $A \in \textsf{TIME}(n^2)$
$O(\log n)$

Check even

$O(n)$

cross out half of 0's and 1's

$O(n \log n)$

$0000 \begin{array}{c} \text{1111} \end{array}$

Copy 0's to 2nd tape

$0000 \begin{array}{c} \text{1111} \end{array}$

0000 $0(n)$
Let \(t(n) \) be a function where \(t(n) = n \).

Then every \(t(n) \) time multi-tape TM has an equiv. \(O(t^2(n)) \) single tape TM.

\[\text{-non-det TM (time } t(n) \text{)} \]

\[O(t(n)) \]

\[2 \text{-time single tape TM} \]