\[A_{TM} = \{ <M, w> | M \text{ is a TM that accepts } w \} \]

\(A_{TM} \) is not decidable.

Proof by contradiction

Suppose \(A_{TM} \) is decidable and \(H \) is the TM that decides it.

\[H(<M, w>) = \begin{cases}
\text{accept when } M \text{ accepts } w \\
\text{reject when } M \text{ does not accept } w
\end{cases} \]

Construct \(D \), a TM, that uses TM \(H \).

\(D \): on input \(<M>\) where \(M \) is a TM

1. run \(H \) on input \(<M, <M>>\)
2. output the opposite of \(H \).
 - if \(H \) accepts \(\Rightarrow D \) reject
 - if \(H \) rejects \(\Rightarrow D \) accept
run D on input $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases}
\text{accepts} & \text{if } D \text{ accepts } \langle D \rangle \\
\text{rejects} & \text{if } D \text{ does not accept } \langle D \rangle
\end{cases}$$

a contradiction.

So H cannot exist.

$\therefore A_{TM}$ is not decidable.
co-Turing recognizable
if its complement is
Turing recognizable.

L is recognizable
$T \text{ rec. } L$

L is co-Turing rec., $R \text{ TM}$

A language is decidable iff
it is Turing rec. and
co-Turing rec.

L is recog.
and \overline{L} is recog.

A_{Tm} is not decidable
A_{Tm} is Turing recognizable.

A_{Tm} is not co-Turing recog.
so $\overline{A_{\text{Tm}}}$ is not Turing recog.
Rules

\[S \to aSa \]

CFG:

LHS: 1 variable
RHS: string of vars and term.

\[\alpha A \beta \to \alpha X \beta \]

See: \(X \neq \varepsilon \)

\(\alpha, \beta, X \) are strings of vars and terms

\(A \): variable

\[L = \{ a^n b^n c^n | n \geq 1 \} \]

\[S \to S_a BC S / S_a BC \]

\[S_a \to ABC S / ABC \]

\[BA \to AB \quad aA \to aa \]

\[CA \to AC \quad aB \to ab \]

\[CB \to BC \quad bB \to bb \]

\[S_a \to a \quad bC \to bc \]

\[C \to cc \]

\[S \]

\[S_a BC S / S_a BC \]

\[aBC S / aBC ABC \]

\[aBAC BC \]

\[aABC BC \]

\[aaBC BC \]

\[aaBB CC \]

\[aabBC \]

\[aaabbccc \]