$$
\begin{aligned}
& A_{T m}=\{\langle m, w\rangle \mid M \text { is a } T M \\
& \text { that accepts } w\}
\end{aligned}
$$

$A_{T M}$ is not decidable.
Proof by contradiction
Suppose $A_{\text {Tm }}$ is decidable and H is the TM that decides it.

$$
H(\langle M, w\rangle)=\left\{\begin{array}{r}
\text { decides it when } M \text { accepts } w \\
\text { reject when } M \text { mast } \\
\text { does not accept }
\end{array}\right.
$$

Construct D, a T.M., that
uses TM H.
D : on input $\langle M\rangle$ where M is \& TM

1. run H on input

$$
\langle M,\langle M\rangle\rangle
$$

2. output the opposite of H. if H accepts $\rightarrow D$ reject if H rejects $\rightarrow D$ accept

run D on input $\langle D\rangle$

$$
D(\langle D\rangle)= \begin{cases}a<c e p t s & \text { if } D \\ & \text { does not } \\ \text { accept }\langle D\rangle\end{cases}
$$

So H cannot exist.
$\therefore A_{T m}$ is not decidable.
co-Turing recognizable if its complement is Turing recognizable.
L is recognizable
T rec. L

L is co-Turing rec., R. TM

a language is decidable of it is Turing rec. and co Turing rec.
L is recon. and L is recon.
$A_{\text {Tm }}$ is not decidable
$A_{T m}$ is Turing recognizable.
$A_{T M}$ is not co-Turing recog.
so $\overline{A_{\text {Tm }}}$ is not Turing rect

Rules

$$
\begin{aligned}
& S \rightarrow{ }_{a} S_{a} \\
& \text { CF: } \\
& \text { HS: } 1 \text { variable } \\
& \text { RHS: string of } \text { vars and tam. } \\
& \text { vars and sem. } \\
& \alpha A \beta \rightarrow \alpha X \beta \quad \begin{array}{l}
\text { Ss: } X \neq \Sigma \\
\alpha, \beta, X \text { are string }
\end{array} \\
& \text { of vars and } \\
& \text { A: variable } \\
& L=\left\{a^{n} b^{n} c^{n} \mid n>1\right\}^{A:} \\
& S \rightarrow S_{a} B C S_{1} \mid S_{a} B C \\
& S_{1} \rightarrow A B C S_{1} \mid A B C \\
& B A \rightarrow A B \quad a A \rightarrow a a \\
& \begin{array}{ll}
C A & \rightarrow A C \\
C B & \rightarrow B C
\end{array} \quad a b \\
& \begin{array}{l}
C B \rightarrow B C \quad b B \rightarrow b b \\
S_{a} \rightarrow a \quad b
\end{array} \\
& b c \rightarrow b c \\
& c \rightarrow c c \\
& 5 \\
& S_{a} B_{1} C S_{1} \\
& \text { a } B C S_{1} \\
& \text { a } B \subseteq \overrightarrow{A B C} \\
& \text { a } B A \subset B C \\
& \text { a } A B C B C \\
& \text { aa } B \subset B C \\
& \begin{array}{l}
a \operatorname{ab} B C C \\
\text { a } a b B C C
\end{array} \\
& \text { aabbce }
\end{aligned}
$$

