\(P \cup L(\{ou1\}^*) \) is language that accepts every possible string over the alphabet. \(P \) is a subset of \(L(\{ou1\}^*) \) and we can build a NFA that recognizes \(L \).
if \(A \) is not regular
then \(\overline{A} \) is not regular.

Suppose \(A \) is not regular and \(\overline{A} \) is regular.
so \(\overline{\overline{A}} \) is regular (by thm)
so \(A \) is regular \(\times \)

\[\neg(p \Rightarrow q) \]
\[\neg p \vee q \]
\[p \wedge \neg q \]
T.M. accepts all \(s \in L \) is a recognizer for \(L \) so \(L \) is Turing recognizable

T.M. that recognizes \(L \) and halts on all input is a decider for \(L \) so \(L \) is Turing decidable
\[x \rightarrow R \equiv x \rightarrow x, R \]
\[0, 1 \rightarrow R \equiv (O \rightarrow O, R) \cup (I \rightarrow I, R) \]
Jflap

- tape: 2 way \infty

- moves: L, R, S

\[
L = \{ w^\#w \mid w \in \{0, 1\}^* \}
\]

\$11 \# 11 \$

\$ \checkmark \$

\$ \checkmark \$

\$ 11 \# 11 \$

\$ \checkmark \$

\$ \checkmark \$