Acceptance Problem

Does a DFA B accept string w?

$A_{DFA} = \{ <B,w> | \text{DFA B accepts input w} \}$

Show A_{DFA} is decidable by constructing a TM M that decides A_{DFA}.

M: on input $<B,w>$ where B is a DFA and w is a string.

1. simulate B on input w.
2. if simulation ends in accept state, accept. Otherwise reject.

```java
boolean DFA_accept(DFA B, String w)
    return simulate(B, w);
```
$A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts string } w \}$

A_{NFA} is decidable

$N: \text{ on input } \langle B, w \rangle \text{ where } B$ is an NFA and w is a string.

1. convert NFA B to equiv. DFA C.
2. run TM M on $\langle C, w \rangle$
3. If M accepts, accept
 Otherwise, reject.

```java
boolean NFA_accept (NFA B, String w) {
    DFA C = nfa2dfa(B);
    return DFA_accept(C, w);
}
```
Emptiness Testing

\[E_{DFA} = \{ <A> | A \text{ is a DFA and } L(A) = \emptyset \} \]

\(E_{DFA} \) is decidable

Construct TM \(T \)

\(T \): on input \(<A> \) where

\(A \) is a DFA

1. mark the first state
2. repeat until no new states are marked
 3. mark any state that has a transition from a marked state
4. If no accept states are marked, accept
 Otherwise, reject

1. simulate all strings up to length \(p \)
 \(p = |Q| \)
2. if any string are accepted, reject
 Otherwise, accept