HW 4 due
Mon. 2/14
Prove \(B = \{0^n1^n | n \geq 0 \} \) is not regular.

Suppose \(B \) is regular. Let \(p \) be the pumping length.

Choose \(s = 0^p1^p \)

Since \(s \in B \) and \(|s| = p \) by the pumping lemma, \(s \) can be split into 3 pieces \(s = xyz \) such that for \(i \geq 0 \) \(xy^iz \in B \)

\[3 \text{ cases:} \]

1. \(y \) is all 0's

 \[\text{so } xyyz \text{ has more 0's} \]

 Then 1's so is not in \(B \).

 e.g. \(s = \overline{00001111} \)

 \[\overline{x \ y \ z} \]

 \[xyyz = 000001111 \]

2. \(y \) is all ones - see above

3. \(y \) has both 0's and 1's

 \(xyyz \) will have 0's and 1's out of order. \(\notin B \)

 e.g. \(s = \overline{00111} \)

 \[\overline{x \ y \ z} \]

 \[xyyz = 00010111 \]

 \(\notin B \)

 so \(s \) can't be "pumped"

\(\therefore B \) is not regular.
\[C = \{ w \mid w \text{ has an equal # of 0's and 1's} \} \]

Choose a string \(s \) of length \(\geq p \).

\[s = 0^p 1^p \]

Since \(|xy| \leq p \) (by the pumping lemma),

so \(y \) must be all 0's.

so \(xyyz \) will have more 0's than 1's,

\[xyyz \notin C \]

therefore \(C \) is not reg.

\[C \cap (0^*1^*) = 0^n 1^n \]

is not regular.
\[D = \{ w w^r | w \in \{0,1\}^* \} \]

\[s = 0^p 0^p \quad \in D \quad \text{but} \]

\[s = 0^p 110^p \quad \text{no } p. \]

\[s = 0^p 110^p \quad \frac{1 \times y \leq p}{y \text{ must be}} \]

\[s = 0^p 10^p \quad \not\in D \quad \text{all 0s} \]