B_1

B_2

Reg. exp

$B_0 = L((a^*)^*)$

B_n

$Q = \{q_0, \ldots, (n-1)\}$

$\Sigma = \{a, \bar{a}\}$

$\delta(q_0, a) = (q_0) \% n$

$q_0 = 0$

$F = \{0\}$
If \(A \) is a regular language, then there is a number \(p \) (the pumping length) where, if \(s \) is any string in \(A \) of length at least \(p \), then \(s \) may be divided into 3 pieces \(s=xyz \) satisfying the following conditions:

1. for each \(i \geq 0 \) \(xy^iz \) is in \(A \)
2. \(|y| > 0 \)
3. \(|xy| \leq p \)

\[
\text{Idea: DFA } M \text{ rec. } A \\
\text{let } p = \# \text{ states in } M
\]
Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A, and p is the number of states in M.

Let $s = s_1 s_2 s_3 \ldots s_n$ be a string in A of length n, where $n \geq p$.

Let $r_1, r_2, \ldots, r_{n+1}$ be a sequence of states that M enters while processing s, so $r_{i+1} = S(r_i, s_i)$ for $1 \leq i \leq n$.

This sequence has length $n+1$ which is at least $p+1$.

Among the first $p+1$ elements, two must be the same state.

Call them r_j and r_k.

r_j is first ω, r_k is second

\[l \leq p+1 \]

Now let $x = s_1 \ldots s_{j-1}$

$y = s_j \ldots s_{k-1}$

$z = s_k \ldots s_n$

Consider the conditions:

1. for $i = 0$ $xy'z \in A$

2. $|y| > 0$

3. $|xy| \leq p$ \(l \leq p+1 \)

\[\text{QED} \]