

Regular Expressions

$$
\begin{array}{ccc}
\substack{\text { operations }} & (0 \sim 1) \cdot 1^{*} \\
\circ & 0 & 111 \\
* & 111 & \checkmark \\
& 10 & x \\
& (0 \sim 1) 1^{*}
\end{array}
$$

$R$ is reg. $\exp$ if $R$ is

1. a for some $a \in \Sigma$ (single symbol)
2. $\varepsilon$-string $w /$ no symbols
3. $\varnothing$ - no strings
4. ( $R_{1} \cup R_{2}$ ) where $R_{1}, R_{2}$ are reg. $\exp$.
5. $\left(R_{1} \circ R_{2}\right)$
6. $R_{1}^{*} R_{1}$ is reg. exp.

$$
R^{+}=R R^{*}
$$

Precedence order *,0,u

$$
\begin{gathered}
A \cup B C^{*} \\
A \cup\left(B^{0}\left(c^{*}\right)\right)
\end{gathered} \sum^{*} \quad .
$$

$L(R)$ language described by reg. exp $R$.

$$
\begin{aligned}
& \Sigma=\{0,1\} \\
& R=0^{*} \mid 0^{*} 10^{*}
\end{aligned}
$$



$$
\begin{gathered}
\frac{00 r}{1^{*} \phi=\phi} \\
\phi^{*}=\{\varepsilon\} \\
R \cup \varnothing=R \\
R \cup\{\varepsilon\}=R
\end{gathered}
$$

A language is regular iff some reg. exp. describes it.
I. If a language is described by a regular expression then it is regular.
Given a regular expression $R$ Show $L(R)$ is regular by building an NFA to recognize nt building 6 cases from def. of reg exp

1. $R=a$
2. $R=\varepsilon$

$\rightarrow 0$
3. $R=\varnothing$
4. $R=R_{1} \cup R_{2}$


$a^{x} b \cup b^{x}$ build NFA
$\sigma^{\circ}$


If a language is regular, then (III) is described by a regular exp.

GNFA : generalized NFA egg.


