$$
\begin{aligned}
1.54 \text { if } & :=1 \quad a b^{n} c^{n} \\
& i \neq 1 \\
& a^{*} b^{*} c^{*} \\
& \left(\varepsilon \cup a a^{*}\right) b^{*} c^{*}
\end{aligned}
$$

Context free

stout....
var:

$$
\begin{aligned}
& \because \rightarrow \varnothing A 1 \\
& \therefore \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

$$
\text { variables: } A, B
$$

$$
\text { terminals: } \begin{array}{r}
0,1, \# \\
\begin{array}{c}
\text { alphabet } \\
\text { for strings }
\end{array}
\end{array}
$$

apply

000\#111
O\#1 OO \#11
G: grammar \quad LG) $\rightarrow\left\{O^{n} \# 1^{n} \mid n \geq 0\right\}$

$$
\underset{B \rightarrow D}{\rightarrow} \rightarrow \varnothing A \mid B
$$

$B \rightarrow \#$

$$
\begin{aligned}
\langle E X P R\rangle \rightarrow & \langle E X P R\rangle+\langle T E R M\rangle \mid\langle T I R M\rangle \\
\langle T E R M\rangle \rightarrow & \langle T E R M\rangle \times\langle F A C T O R\rangle \mid \\
& \langle F A C T O R\rangle \\
\langle\text { FACTOR }\rangle \rightarrow & (\langle E X P R\rangle) \mid a
\end{aligned}
$$

Derive $a+a \times a$

$$
\begin{aligned}
\langle E X P R\rangle & \Rightarrow\langle E X P R\rangle+\langle T E R M\rangle \\
& \Rightarrow\langle T E R M\rangle+\langle T E R M\rangle \\
& \Rightarrow a+\text { PRETOR }+\langle T E R M\rangle \\
& \Rightarrow a+\langle T E R M\rangle \times\langle\text { FACTOR }\rangle \\
& \Rightarrow a+\langle P A C T O R\rangle \times\langle F A C T O R\rangle \\
& \Rightarrow a+a \times\langle\text { FACTOR }\rangle \\
& \Rightarrow a+a \times a
\end{aligned}
$$

formal Def. of CFG

$$
(V, \Sigma, R, S)
$$

1. V : finite set of variables
2. \sum : Finite set of terminals, disjoint from V.
3. R : finite set of rules each rule, is a single variable each a sue ing of variables and terminals.
4. $s \in V$ start symbol
rule $A \rightarrow w$
uAr yields nv

$$
u A_{v} \Rightarrow u w v
$$

u derives $v \quad(u \stackrel{*}{\Rightarrow} v)$

$$
u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow u_{3} \Rightarrow \Rightarrow v
$$

