Binary Search
 sorted
$a[1 . . n]$

$$
\text { index }=0
$$

b. WHom $=1$
top $=n$
while ($t_{o p} \geq$ bottom \&\& ind $==0$) $\}$

$$
\begin{aligned}
& \text { mid }=L \text { bottom }+t_{\text {op }} \\
& \text { if }(\text { a }[\text { mid }]==x) \\
& \quad \text { index }=\text { mid; } \\
& \text { else } \text { if }(\text { a }[\text { mid }]>x) \\
& \\
& \text { top }=\text { mid }-1 ;
\end{aligned}
$$

else

$$
\text { bottom }=\text { mid }+1 \text { j }
$$

ξ
ω_{n} : \# of iterations of the loop in worst case execution of binary search

$$
\omega_{1}=1
$$

k - elements

$\left\lfloor\frac{k}{2}\right\rfloor$

$$
\begin{aligned}
& w_{0}=1 \quad=\frac{k}{2} \\
& w_{k}=1+w_{\left\lfloor\frac{k}{2}\right\rfloor} \\
& w_{2}=1+w_{1}=2 \\
& w_{3}=1+w_{1}=2 \\
& w_{4}=1+w_{2}=3 \quad \text { if } 2^{i} \leq n<2^{i+1} \\
& w_{5}=1+w_{2}=3 \\
& \begin{array}{l}
w_{6}=1+w_{3}=3 \\
w_{6}=1+w_{3}=3
\end{array} \\
& w_{7}=1+w_{3}=3 \\
& \begin{array}{l}
w_{8}=1+w_{4}=4 \\
w_{8}=1+w_{4}=4
\end{array} \\
& \begin{array}{l}
w_{9}=1+w_{4}=4 \\
w_{10}=1+w_{5}=4
\end{array} \\
& \left.\begin{array}{r|r}
1+w_{5}=4 \\
\vdots \\
w_{15}= & 1+w_{7}=4 \\
w_{16}=1+w_{8}=5 \\
\vdots
\end{array} \right\rvert\, \begin{array}{c}
\text { and } 2^{k} \leq x<2^{k+1} \\
\text { Thin } \log _{2} x J=k \\
(9.4 .2)
\end{array} \\
& w_{n}=\left\lfloor\log _{2} n\right\rfloor+1
\end{aligned}
$$

$$
w_{1}=1
$$

$$
\begin{aligned}
& w_{n}=1+w_{\lfloor n / 2\rfloor} \text { for } n>1
\end{aligned}
$$

prove

$$
w_{n}=\left\lfloor\log _{2} n\right\rfloor+1 \quad n \geqslant 1
$$

Strong induction:
Base case: suppose $n=1$

$$
\begin{aligned}
w_{1}=L \log _{2} \mid J+1 & =\lfloor 0]+1 \\
& =1
\end{aligned}
$$

Induction:
for all $k \geq 2$ if
$w_{i}=\left\lfloor\log _{2} i\right\rfloor+1$ for
$1 \leq i<k$ then
$w_{k}=\left\lfloor\log _{2} k\right\rfloor+1$
case 1: k is odd

$$
\begin{aligned}
& \lfloor k / 2\rfloor=\frac{k-1}{2} \\
w_{k}= & 1+w_{\lfloor k / 2} \quad \text { def of } w \\
= & \left.\left.1+w^{\frac{k-1}{2}}\left(\frac{k-1}{2}\right)\right\rfloor+1\right) \\
= & 1+\left(\left\lfloor\operatorname { l o g } _ { 2 } \left(\frac{1}{2}\right.\right.\right. \\
= & \left\lfloor\log _{2}(k-1)-\log _{2}(2)\right\rfloor+2 \\
= & \left\lfloor\log _{2}(k-1)\right\rfloor_{+1}+2
\end{aligned}
$$

for any odd int. $k>1$

$$
\begin{aligned}
& \left\lfloor\log _{2}(k-1)\right\rfloor=\left\lfloor\log _{2} k!\right. \\
& =\left\lfloor\log _{2}(k)\right\rfloor+1
\end{aligned}
$$

