8.1 $\# 38$

$$
a_{3}=a_{2}+a_{0}+2
$$

lingh

$$
\begin{aligned}
& 0=\Sigma \quad a_{0}=1 \\
& 1=1,0 \\
& a_{1}=2 \\
& 2=00,01,10,11 \quad a_{2}=4 \\
& 3=006,0 b_{1}, 010,011 a_{3}=7 \\
& \left\{\begin{array}{l}
0 \frac{\text { lenth } 2}{}(4) \\
100 \text { len } 0 \\
110 \\
111
\end{array}\right. \\
& 4=0060,0061,00 / 10,0041 \\
& \text {, odo, 1001, DAN, Det } \\
& 110 / 0,1 D<1,1110,1111 \\
& \begin{array}{ll}
0 \xrightarrow{l} \frac{l=3}{l=1} & 7 \\
100 \xlongequal[l=0]{l=0} & 1
\end{array} \\
& 1110 \\
& 1111
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=2 x^{4}+3 x^{3}+5 \\
& g(x)=x^{4}
\end{aligned}
$$

$f(x)$ is $(\mathbb{H})(g(x))$

1. $f(x)$ is $2(g(x))$
2. show $f(x)$ is $\bigcirc(g(x))$

$$
\begin{gathered}
2 x^{4}+3 x^{3}+5 \leq 2 x^{4}+3 x^{4}+5 x^{4} \\
10 \cdot x^{4} \\
x
\end{gathered}
$$

we know $\begin{array}{ll}x^{3}<x^{4} \\ 1 & <x^{4}\end{array}$

$$
\left|2 x^{4}+3 x^{3}+5\right| \leq 10\left|x^{4}\right|
$$

w/ $b=1$ and $B=10$
by the def of $\bigcirc(x)$ is $O(g(x))$

$a_{0}, \ldots a_{n} \in \mathbb{R}$ and $a_{n} \neq 0$

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

$$
\text { is } O\left(x^{5}\right) \quad \forall s \geq n
$$

$Q\left(x^{r}\right) \forall r \leq n$
$\left(1-1 x^{n}\right)$

$$
\begin{array}{r}
a_{i}, b_{j} \in \mathbb{R} \quad a_{n} \neq 0, b_{m} \neq 0 \\
\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots b_{1} x+b_{0}} \\
+\left(x^{n-m}\right) \\
\frac{5 x^{2}-3}{4 x}
\end{array}
$$

Efficiency of $\mathrm{A}_{\text {gorithms }}$
linear search

- comparisons
- size of data-n
- position of searched item look at worst case not in array or
lam
matrix mult.
operations.
array access additions multiplications

$$
\begin{aligned}
& p=0 ; \\
& x=2 ; \\
& \text { for }(i n t i=2 ; i \leq n ; i++)\} \\
& \quad p=(p+1) \cdot x ;
\end{aligned}
$$

ξ

$$
\begin{array}{cc}
n-1 & \text { iterations } \\
\hline 1 \text { add } & (i++) \\
1 \text { add } & (p+1) \\
1 \text { maul } & =x \\
3(n-1) & \text { ops. }
\end{array}
$$

also $\Theta(n), \Omega(n)$

