12 people
5 men
7 women
5 person group 3 men, 2 women

$$
\binom{5}{3}\binom{7}{2}
$$

5 person group $w /$ at least 1 man

$$
\left(\begin{array}{c}
4 \\
11 \\
5
\end{array}\right)^{1}-\binom{7}{5}^{\text {man }}
$$

groups w/
$1 \operatorname{man}\binom{5}{1}\binom{7}{4}+$
$2 \operatorname{man}\binom{5}{2}\binom{7}{3}+$
5 man $\frac{\binom{5}{5}\binom{7}{0}+}{\operatorname{sum}}$
functions
map input to an output

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=\sqrt{x} \\
& x \in \mathbb{D} \\
& f\left(\frac{m}{n}\right)=m \\
& \quad f\left(\frac{1}{2}\right)=1 \quad f\left(\frac{3}{6}\right)=3 \\
& \frac{1}{2}=\frac{3}{6}
\end{aligned}
$$

mapping from 1 set to another

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=x^{2}
$$

$f: X \rightarrow Y$
X is the domain
Y is the co-domain
each element in X maps to a

$$
\left(\begin{array}{l}
\text { unique value in } Y \\
\forall x \in X \quad y \\
y
\end{array}\right.
$$

$$
\text { range of } f=\{y \in Y \mid y=f(x)
$$

for some $x \in X\}$
preinage of an element y

$$
=\{x \in X \mid f(x)=y\}
$$

$f: X \rightarrow Y$

x	$f(x)$
x_{1}	$y 5$
x_{2}	y_{3}
x_{3}	y_{6}
x_{4}	y_{4}
x_{5}	y_{1}

Doss $f=g$? $f: x \rightarrow Y \quad g: X \rightarrow Y$

$$
f=g \text { if } f(x)=g(x) \quad \forall x \in X
$$

$f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \mathbb{R} \rightarrow \mathbb{R} \\
& f(x)=|x| \quad \begin{array}{l}
g: \mathbb{R} \rightarrow \mathbb{R} \\
g(x)=\sqrt{\left(x^{2}\right)}
\end{array}
\end{aligned}
$$

Does $f=g$?
Identity $\quad i_{x}: x \rightarrow x$

$$
i_{x}(x)=x
$$

S : set of all strings made up of a 's and b 's.

$$
g(s)=\# \text { of a's in } s
$$

e: empty string

$$
\begin{aligned}
& g(b b)=0 \\
& g(\text { barb })=2 \\
& g(\epsilon)=0
\end{aligned}
$$

Broken function domain: set of all ordered n-tuples on OIl
co-domain: $\{0,1\}$

$$
\begin{aligned}
& f:\{0,1\}^{n} \rightarrow\{0,1\} \\
& 1> \\
& \{0,1\} \times\{0,1\} \times\{0,1\} \ldots \\
& \text { \& } \quad \begin{array}{lll|l}
a & b & c & f(a, b, c) \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

