Permutations
An r-permutation of a set of n elements is an ordered selection of r elements taken from that set.

Set $\{a, b, c, d\}$
2-permutations

$$
\begin{gathered}
\begin{array}{cc}
a b & c a \\
a c & c b \\
a d & c d \\
b a & d a \\
b c & d b \\
b d & d c
\end{array} \\
P(n, r)=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot(n-r+1) \\
=\frac{n!}{(n-r)!}=\frac{n(n-1)(n-2) \ldots(n-r-1)(n-r)(n-n-1) \ldots 2 n+1}{(n-r)(n-r-1) \cdot \ldots \cdot 2 \cdot x} \\
P(4,2)=\frac{4 \cdot 3 \cdot 2 \cdot x}{\not 2 \cdot x}
\end{gathered}
$$

OBJECTS
How many permutations of the letters?

$$
7!
$$

How many 3-permutations?

$$
P(7,3)=7 \cdot 6 \cdot 5=210
$$

How many 3 -permutations that begin w / B '?

$$
1 \cdot 6 \cdot 5=30
$$

Number of passwords on a..z $w / 3$ or fewer letters

3 letter? 2 letter? 1 letter? letter

$$
\begin{aligned}
& 26^{3} \\
& 26^{2} \\
& 26^{\prime} \quad \begin{array}{l}
26^{\circ} \\
=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 \text { or fever }}{26^{3}+26^{2}}+26^{1}+26^{\circ} \\
& =18,279
\end{aligned}
$$

Addition rule: A is finite and a union of k mutually disjoint sets $A_{1}, \ldots A_{k}$ then

$$
N(A)=N\left(A_{1}\right)+N\left(A_{2}\right)+\ldots A\left(A_{k}\right)
$$

Coumbre of
elements $i n A$)

Integers (3 digit) divisible by 5 :

Use addition rule
3-digit \#'s ending in 5

$$
\begin{aligned}
& \bar{\uparrow} \quad \pi \\
& 1 . .9 \cdot 0.9 \\
& 9 \cdot 10 \cdot 1=90
\end{aligned}
$$

ending in 0

$$
-0 \quad 9 \cdot 10 \cdot 1=90
$$

divisible by $5=90+90=180$
A is a finite set and $B \subseteq A$

$$
N(A-B)=N(A)-N(B)
$$

Difference Rule
Passwords suer $\left\{\begin{array}{l}\text { a..z } \\ \text { of length }\end{array}{ }^{\text {w }}\right.$ repeats.
\# f 4 char passwords

$$
26^{4}
$$

\# w/ repeats
\#f 4 char password ats 10 repeats

$$
\begin{gathered}
P(26,4)= \\
26 \cdot 25 \cdot 24.23 \\
=\frac{26!}{23!}
\end{gathered}
$$

$$
26^{4}-\frac{26!}{22!}
$$

