$$
\begin{aligned}
& P_{k}=2 \cdot P_{k-1}+3^{k} \quad k \geq 2 \\
& P_{1}=2 \\
& P_{n}=2^{n}+2^{n}\left(\sum_{i=2}^{n}\left(\frac{3}{2}\right)^{i}\right)\left[\sum_{i=0}^{n} r^{i}=\left(\frac{r^{n+1}-1}{r-1}\right)\right. \\
& =2^{n}+2^{n} \cdot\left[\sum_{i=0}^{n}\left(\frac{3}{2}\right)^{i}-\left(\frac{3}{2}\right)^{0}-\left(\frac{3}{2}\right)^{1}\right] \\
& =2^{n}+2^{n} \cdot\left[\frac{(3 / 2)^{n+1}-1}{\frac{3 / 2}{2-1 / 2}}-1-\frac{5}{2} \cdot \frac{3}{2}\right] \\
& =2^{n}+2^{n} \cdot\left[22 \cdot \frac{3^{n+1}}{2^{n+1}}-2^{-9 / 2}-\frac{5}{2}\right] \\
& \left.=2^{n}+3^{n+1}-\frac{9}{2} \cdot 2^{n-1}\right] \\
& =2 \cdot 2^{n-1}+3^{n+1}-9 \cdot 2^{n-1}=3^{n+1}-7 \cdot 2^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& p_{k}=2 \cdot p_{k-1}+3^{k} \quad k \geqslant 2 \\
& p_{1}=2
\end{aligned}
$$

show $p_{n}=3^{n+1}-7 \cdot 2^{n-1}$
Basis: $n=1$

$$
\begin{aligned}
& n=1 \\
& P_{1}=3^{1+1}-7 \cdot 2^{1-1}=3^{2}-7 \cdot 2^{\circ} \\
&=9-7=2
\end{aligned}
$$

Induction: Suppose $p_{k}=3^{k+1}-7 \cdot 2^{k-1}$
Show $p_{k+1}=3^{k+2}-7 \cdot 2^{k}$

$$
\begin{aligned}
p_{k+1} & =2 \cdot p_{k}+3^{k+1} \quad \text { def of } p \\
& =2 \cdot\left[3^{k+1}-7 \cdot 2^{k-1}\right]+3^{k+1} \\
& =2 \cdot 3^{k+1}-7 \cdot 2^{k}+3^{k+1} \text { Ind .j. } \\
& =3 \cdot 3^{k+1}-7 \cdot 2^{k} \\
& =3^{k+2}-7 \cdot 2^{k}
\end{aligned}
$$

Ch. 9.
$0, \Omega 2, ~ N o t a t i o n s$
\longrightarrow big 0 - Bachman
big omega $\}$ Knuth
big theta
-
: for functions f and g
If. for sufficiently large values of x, the values of $|f(x)|$
are less than those of a multiple of $|g(x)|$
f is of order at most

$f(x)$ is $O(g(x))$ iff there exists positive real numbers B and b such that $|f(x)| \leq B \cdot|g(x)|$ for all real numbers $x>b$
Ω

$f(x)$ is $\Omega^{a}(g(x))$ iff
$\exists A, a<\mathbb{R}^{+}$s.t.

$$
\begin{aligned}
& \exists A, a \in \mathbb{R}^{+} \text {s.t. } \\
& A \cdot \left\lvert\, \begin{array}{l}
g(x) \mid \\
x>a
\end{array} \leq f(x)\right. \text { for all }
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \text { is } \Theta(g(x)) \text { if } \exists A B, k \in \mathbb{R}^{+} \\
& \text {st. } A|g(x)| \leq|f(x)| \leq B|g(x)|
\end{aligned}
$$

$\stackrel{\text { see }}{p .521}$ for all $x>k$

Show $2 x_{f}^{4}+3 x^{3}+5$ is $\left(\underset{\text { i }}{ }\binom{x^{4}}{\uparrow}\right.$
a. show $f(x)$ is $S(g(x))^{g(x)}$

$$
2\left|x^{4}\right| \leq\left|2 x^{4}+3 x^{3}+5\right|
$$

w/ $A=2$ and $a=0$
$f(x)$ is $\Omega(g(x))$ by deft of

