$S_{n, r}$ - set of size n into r subsets
$S_{4,3}$

$$
\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

$$
\begin{array}{ll}
\left\{x_{1}, x_{2}\right\} & \left\{x_{3}\right\}\left\{x_{4}\right\} \\
\left\{x_{1}, x_{3}\right\} & \left\{x_{2}\right\}\left\{x_{4}\right\} \quad\left\{x_{4}\right\}
\end{array}
$$

added to

$$
S_{n, r}=S_{n-1, r-1}+r \cdot S_{n-1, r}
$$

$\begin{gathered}\text { Base } \\ \text { cases }\end{gathered}: S_{n, n}=1 \quad S_{n, 1}=1$

$$
\begin{aligned}
& a_{k}=a_{k-1}+2 \quad k \geq 1 \\
& a_{0}=1 \\
& a_{0}=1 \\
& a_{1}=1+2 \\
& a_{2}=(1+2)+2 \\
& a_{3}=((1+2)+2)+2 \\
& a_{4}=(1+2+2+2)+2 \\
& \vdots \\
& a_{n}=1+2 n \quad \text { for } n \geq 0 \\
& \text { Prove it! }
\end{aligned}
$$

Basis: $n=0$

$$
a_{0}=1+2 \cdot 0=1
$$

Induction:
Suppose $a_{k}=1+2 \cdot k$
Show $a_{k+1}=1+2(k+1)=2 k+3$

$$
\begin{aligned}
a_{k+1} & =a_{k}+2 \text { by def of a } \\
& =(1+2 k)+2 \text { by Ind. Hyp. } \\
& =2 k+3
\end{aligned}
$$

Id st. $\quad a_{k}=a_{k-1}+d$ for all $k \geq 1$
then $a_{n}=a_{0}+d \cdot n \quad \forall n \geqslant 0$ (Arithmetic Sequence)

Geometric Sequence

$$
\begin{aligned}
& a_{k}=r \cdot a_{k-1} \\
& a_{0}=a
\end{aligned} \quad r \neq 0
$$

$$
\begin{aligned}
p_{k} & =2 \cdot p_{k-1}+3^{k} \quad k \geq 2 \\
p_{1} & =2 \\
p_{2} & =2(2)+3^{2} \\
p_{3} & =2\left(2(2)+3^{2}\right)+3^{3}=2 \cdot 2 \cdot 2+2 \cdot 3^{2}+3^{3} \\
p_{4} & =2\left(2\left(2(2)+3^{2}\right)+3^{3}\right)+3^{4} \\
& =\frac{2 \cdot 2 \cdot 2 \cdot 2+2 \cdot 2 \cdot 3^{2}+2 \cdot 3^{3}+3^{4}}{2^{4}} \\
p_{5}= & 2^{5}+2 \cdot 2 \cdot 2^{2} \cdot 3^{2}+2 \cdot 2 \cdot 3^{3}+2 \cdot 3^{4}+3^{5} \\
= & 2^{5}+2^{3} \cdot 3^{2}+2^{2} \cdot 3^{3}+2 \cdot 3^{4}+3^{5} \\
p_{n} & =2^{n}+\sum_{i=2}^{n} 2^{n-i} 3^{i}=2^{n}+\sum_{i=2}^{n} \frac{2^{n}}{2^{i}} 3^{i} \\
& \left.\sum_{i=2}^{n} \frac{2^{2}}{7} \cdot\left(\frac{3}{2}\right)^{i}\right) \\
\sum_{i=0}^{n} r^{i} & =\left(\frac{r^{n+1}-1}{r-1}\right)
\end{aligned}
$$

