Cardinality
Two sets have same cardinality iff there is a bijection from one to the other.

$$
\underset{\text { (even) }}{2 \mathbb{Z}} \subset \mathbb{Z}
$$

$$
H(n)=2 n \quad H: \mathbb{Z} \rightarrow 2 \mathbb{Z}
$$

one to one:

$$
\begin{aligned}
H\left(n_{1}\right) & =H\left(n_{2}\right) \\
2 n_{1} & =2 n_{2} \\
n_{1} & =n_{2}
\end{aligned}
$$

onto: suppose $m \in 2 \mathbb{Z}$

$$
\text { so } m=2 k=H(k)
$$

Countable Sets
\mathbb{Z}^{+}: counting numbers
Set S if $f: \mathbb{Z}^{+} \rightarrow S$
then we can "count" the values in S

$$
\begin{array}{cc}
f(1)=s_{1} & \text { first } \\
f(2)=s_{2} & \text { second } \\
f(3)=s_{3} & \text { third } \\
\vdots r & \vdots
\end{array}
$$

A set is countably infinite of it has the same cardinality \mathbb{Z}^{+}
A set is countable iff it is finite or countably infinite

II is countable

Rational Numbers? \mathbb{Q}^{+}

reals between 0 and $1=S$ are uncountable
Proof by contradiction
suppose S is countable
so \exists a bijection $f: \mathbb{Z}^{+} \rightarrow S$

$$
a_{i j} \in\{0 . .9\}
$$

$$
\begin{aligned}
& f(1)=0 \cdot a_{11} a_{12} a_{13} a_{14} a_{15} \cdots a_{11} \cdots \\
& f(2)=0 \cdot a_{21} a_{22} a_{23} a_{24} a_{25} \cdots a_{2 n} \cdots \\
& f(3)=0 \cdot a_{31} a_{32} a_{33} a_{34} a_{35} \cdots a_{3 n} \cdots
\end{aligned}
$$

$$
f(n)=0 . a_{n 1} a_{n 2} a_{n 3} a_{n 4} a_{n 5} \cdots a_{n n} \cdots
$$

construct $d=O \cdot d_{1} d_{2} d_{3} \ldots d_{n} .$.
e.9.

$$
d_{n}= \begin{cases}1 & \text { if } a_{n n} \neq 1 \\ 2 & \text { if } a_{n n}=1\end{cases}
$$

$F(1)=0.23574 \ldots$
$f(2)=0.41628 \ldots$
$f(3)=0.74891 \ldots$
d differs from each item $d=0.121 \ldots$
in at least 1 position
so $\nexists k$ sit $F(k)=d$
which is a contradiction
P : set of all programs in a language (strings of 1 's and 0 's)

$$
\begin{aligned}
& 1011,011,11,01,101 \\
& 01,11,011,101,1011
\end{aligned}
$$

by length then by 0,1 from Lit to right

