Empty Set
Prove $S=\phi$
Suppose $\exists x \in S$
Show a contradiction
Algebraic use The 5.2.2 p 272
if $A \cap C=\varnothing$ then

$$
\begin{aligned}
& (A \times B) \cap(C \times D)=\varnothing \\
& \hline \text { Suppose } \exists x \in(A \times B) \cap(C \times D) \\
& x \in(A \times B) \text { and } x \in(C \times D) \\
& x=(m, n)
\end{aligned}
$$

$$
\begin{aligned}
& x \in(A \times B) \text { and } x \in(C \times D) \\
& x=(m, n) \\
& \text { so } m \in A \text { and } n \in B \\
& \text { and } m \in C \text { and } n \in D \\
& \text { so } m \in(A \cap C) \\
& \therefore A \cap C \neq \varnothing
\end{aligned}
$$

$F: X \rightarrow Y$ is one-to-one (injective) if $\forall x_{1}, x_{2} \in X$
if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$

prove $f(x)=4 x-1$ is one to one
suppose $x_{1}, x_{2} \in X$ sit. $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
4 x_{1}-T & =4 x_{2}-T \\
4 x_{1} & =4 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

prove $g(x)=x^{2}$ is not one to one find x_{1}, x_{2} st. $x_{1} \neq x_{2}$ and $g\left(x_{1}\right)=g\left(x_{2}\right)$

