$$
m, n \in \mathbb{Z} \quad m \leq n
$$

$n-m+1$ integers in the list from m to n

$$
\begin{gathered}
3,4,5,6,7,8,9,10 \\
10-3+1=8
\end{gathered}
$$

How many 3 digit \#'s are divisible by 3 ?
$100,101,102,103,104,105,106, \ldots, 999$
$\begin{array}{ccc}\uparrow & \uparrow & \uparrow \\ 3.34 & 3.35 & 3.333\end{array}$
$34,35,36, \ldots 333$
total $=333-34+1=300$
probability that a 3 digit \#
is divisible by 3

Best of three tournament Avi

Possibility free
B
6 different outcomes 2 and in game 2

$$
\frac{2}{6}=\frac{1}{3}
$$

Multiplication Rule
an operation consists of k steps for each step i, step can be performed in n_{i} ways the entire operation can be done in $n_{1} \cdot n_{2} \cdot n_{3} \cdots n_{k}$ ways

Identifiers

- char, numbers, -
- starts w/ char, -
after 63

$$
\left\{\begin{array}{c}
63 \\
. .2, A \ldots z,-0 . .9\}
\end{array}\right.
$$

$$
\begin{aligned}
& 2 L \\
& 2 f
\end{aligned}
$$

indent. of length 3

$$
53 \cdot 63 \cdot 63
$$

$$
\text { for }\left(i n t,=0 ; i<4 ; i^{++}\right)
$$

$$
\text { for (int } j=0 ; j<3 ; j++)
$$

print ('x');

$$
\text { for }(\text { int } i=0 ; i<4 ; i++)
$$

$$
\text { for } \left.\left(\text { int } j=0 ; j<j_{\text {print }}<^{\prime}\right) ; j^{++}\right)
$$

$$
\text { print }(x \text { ' })
$$

$$
6 \mathrm{x} \text { s }
$$

$$
A=\{a, b, c\}=\{b, a, c\}=\cdots
$$

abc
$a<b$
nutations
$b a c$ boa $c a b$
aba

$$
\begin{aligned}
& 3 \cdot 2 \cdot 1=6 \\
& \text { for a set w/ } n \text { items } \\
& \text { firstitam second } 3^{-1} \\
& n \cdot(n-1) \cdot(n-2) \cdots \cdot 2 \cdot 1 \\
& =n!
\end{aligned}
$$

$$
A=\{a, b, c\},
$$

strings of length 2

$$
3 \cdot 2
$$

