$$
\begin{gathered}
S=\{A \mid A \text { is a set and } \\
A \notin A\} \\
S \in S ?
\end{gathered}
$$

The halting problem:
There is no computer algorithm that will accept as input any algorith X and data set D and then outputs "halts" or "loops forever" to indicate whether X terminates in a finite number of steps when X is run w / D as input.

Proof (b_{y} contradiction)
Suppose there is such an algorithm CheckHalt (X, D)

CheckHalt (x, D) prints
"halts" if x Terminals on in pent D if
"loops forever" if $\quad x$ terminate on D not
Note: we can run CheckHalt (x, x)
Define a second algorithm

$$
\frac{\text { Define }}{\text { lest }(X)} \text { where } x \text { is a progre }
$$

Test (x) : call Checktha $t(x, x)$

halfwit(); of Check Hal $(x \times 0)$ now run Test (Test)
if Test (Test) terminates then Check Hill if(Test, Test), printed Loops forever meaning fest (Test) lopped
former
if Teat (Test) lopes freer
 Prince hals
indicating that Test (Test)
terminates.
which are contradictions Since Test follows from the def. of CheckHalt, Check Halt cannot exist.

Ch. 6: Counting and Probability
a random process:

- one outcome from a set of outcomes
- impossible to say w/ certainty which will occur.
sample space: set of all possible outcomes of a random process.
event: subset of the sample space

If S is a finite sample space in which all outcomes are equally likely and E is some event in S
The probability of $E, P(E)$

$$
P(E)=\frac{\text { The number of outcomes }}{\text { in } E} \text { the total \# of outcomes }
$$

Dos 0^{5}
A

B
c

