Matrix Math

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad\left[\begin{array}{ccc}
3 & 1 & 2 \\
4 & 2 & 5
\end{array}\right]
$$

- multiply by sA scalar 5

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots \\
b_{m 1} & & b_{m d}
\end{array}\right]
$$

$$
=\left[\begin{array}{lll}
a_{11}+b_{11} & & \\
& \square &
\end{array}\right]
$$

$$
c_{i j}=a_{i j}+b_{i j}
$$

Matrix Multiplicat
$\left.\frac{\begin{array}{ll}A: m \times n & A B: m \times r \\ B: n \times r & B \times A\end{array} \text { for } r \neq m}{m \times n} \Rightarrow m \times 1 \Rightarrow m+1\right)$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & \vdots \\
a_{m 1} & a_{m 2} & & a_{m n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{cc}
a_{11} \cdot b_{1}+a_{12} \cdot b_{2}+\ldots \\
\vdots & a_{1 m} b_{n} \\
\vdots \\
a_{m 1} b_{1}+\ldots+ \\
3 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
5 \\
1
\end{array}\right]=\left[\begin{array}{c}
4+25+8 \\
6+30+9
\end{array}\right]=\left[\begin{array}{c}
37 \\
45
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
2 \times 3 & 8 \\
4
\end{array}\right]}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 l} \\
\vdots & & \\
m_{n 1} & \cdots & b_{n l}
\end{array}\right]} \\
=\left[\begin{array}{c}
a_{11} \cdot b_{11}+a_{12} b_{21}+a_{13} b_{31}+\ldots+a_{1 n} b_{n 1} \\
= \\
c_{i j}
\end{array}=a_{i 1}^{c_{i j}} b_{1 j}+a_{i 2} \cdot b_{2 j}+\ldots\right. \\
\\
=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \\
2 \times 3 \\
3 \times 2 \\
A \times 2=\left[\begin{array}{ll}
2+15+40 & 4+20+48 \\
3+18+45 & 6+24+54
\end{array}\right] \\
=\left[\begin{array}{ll}
57 & 72 \\
66 & 84
\end{array}\right] \\
B A=\left[\begin{array}{ccc}
8 & 17 & 26 \\
18 & 39 & 60 \\
28 & 61 & 94
\end{array}\right]
\end{gathered}
$$

point $\left[\begin{array}{l}x \\ y\end{array}\right]$ transform to $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
Scaling $\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}s_{x} \cdot x \\ s_{y} \cdot y\end{array}\right]$
Rotation $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=$

$$
\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
$$

Translation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]
$$

$(x, y) \rightarrow(, \quad)$
Homroyeneous coord syrtem

$$
\begin{aligned}
& \left(x_{h}, y_{n}, h\right) \\
& \text { s.t } x=\frac{x_{n}}{h} \quad y=\frac{y_{h}}{h}
\end{aligned}
$$

$$
(x \cdot h, y \cdot h, h)
$$

set $h=1 \quad(x, y, 1)$
Scale

$$
\begin{aligned}
& \left.\frac{c a c l}{S_{x}} \begin{array}{lll}
0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
\Gamma_{x} \cdot x \\
S_{y} \cdot y \\
1
\end{array}\right] \\
& \text { Rot. }\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta \\
1
\end{array}\right.
\end{aligned}
$$

Transtäte

$$
\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Fixed p^{t} scaling $\left(x_{f}, y_{f}\right)$

1. move $\left(x_{f}, y_{f}\right)$ to $(0,0)$

2 scale $\left(S_{x}, S_{y}\right)$
3 move $(0,0)$ to $\left(x_{f}, y_{f}\right)$

$$
\frac{A(B(C(D)))}{\left.\left[\begin{array}{lll}
1 & 0 & x_{f} \tag{2}\\
0 & 1 & y_{f} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
S_{x} & 0 & x_{f} \\
0 & s_{y} & y_{f} \\
0 & 0 & 1
\end{array}\right]\right)(D)}
$$

(3)

$$
\begin{align*}
& \text { (3,2) }\left[\begin{array}{ccc}
1 & 0 & -x_{f} \\
0 & 1 & -y_{f} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & \begin{array}{c}
s_{x}\left(-x_{f}\right) \\
+x_{f}
\end{array} \\
0 & s_{y} & \begin{array}{l}
5_{y}\left(-y_{f}\right) \\
+y_{f}
\end{array} \\
0 & 0 & 1 \\
3,2,1
\end{array}\right. \tag{3,2}\\
& {\left[\begin{array}{ccc}
s_{x} & 0 & -s_{x} x_{f}+x_{f} \\
0 & s_{y} & -s_{y} y_{f}+y_{f} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x s_{x}-s_{x} x_{f}+x_{f} \\
y s_{y}-s_{y} y_{f}+y_{f} \\
1
\end{array}\right.}
\end{align*}
$$

$$
\begin{array}{lll}
\left.\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] L^{\prime}\right\rfloor
\end{array}
$$

Thursday, September 15, 2016 3:44 PM

