\[g(x) = 100x^2 + 20x + 3500 \]

\[f(x) = x^3 - 2000x^2 \]

Is \(g(x) = f(x) \)?
\[f(x) \geq g(x) \quad \text{for all} \quad x > a \]
\(O, \Omega, \Theta \) notation

For functions \(f \) and \(g \)

If for sufficiently large values \(x \),
the values of \(f \) are less than
those of a multiple of \(g \)

\(f \) is order at most \(g \),
or \(f(x) \) is \(O(g(x)) \)

\[f(x) \text{ is } O(g(x)) \text{ iff } \exists B, b \in \mathbb{R}^+ \text{ s.t. } |f(x)| \leq B |g(x)| \text{ for all real numbers } x > b. \]
\[\Omega \]

If for sufficiently large values of \(x \), the values of \(|f| \) are greater than some multiple of \(|g| \),

\(f \) is of order at least \(g \) or

\(f(x) \) is \(\Omega(g(x)) \)

\(f(x) \) is \(\Omega(g(x)) \) iff

\[\exists A, a \in \mathbb{R}^+ \text{ s.t. } \\
A \cdot |g(x)| \leq |f(x)| \]

\[\forall x \geq a \left| \frac{f(x)}{g(x)} \right| \leq A \cdot |g(x)| \]
\(f \) is order \(g \)

\(f(x) \) is \(\Theta(g(x)) \)