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Abstract

A Ramsey apparatus for cold, polarised neutrons is described, which enables us to measure neutron precession angles with an absolute

accuracy of about 1�. This is necessary to perform a planned high-accuracy measurement of the incoherent neutron scattering length bi;d
of the deuteron. The performance of the apparatus is demonstrated in systematic stability measurements as well as in two selected

examples using samples containing polarised nuclear spins.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Originally introduced as a molecular beam resonance
method, Ramsey’s technique of separated oscillating fields
has become a well-established tool in many areas of
research. It is sensitive to spin-dependent interactions of
particles with external fields, which are detected as a spin
precession angle j�. For slow neutrons the method is
employed in various ways. Most longstanding is the search
for a non-vanishing electric dipole moment (EDM) of the
neutron, which serves as a tool to investigate CP violation
beyond the CKM mechanism. Another application is the
measurement of the spin-dependent, incoherent neutron
scattering length bi of atomic nuclides. Here, the measured
angle j� is due to the spin-dependent strong force between
neutron and nucleus, and it is proportional to bi. A
e front matter r 2008 Elsevier B.V. All rights reserved.
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convenient description parameterises the collective neutron
optical effect of a nuclear polarised target as a neutron
interaction with a pseudomagnetic field, introduced to
underline the analogy with ordinary neutron Larmor
precession in a magnetic field. The method was pioneered
by a group from Saclay in the 1970s and provided values
for more than 30 nuclides with applications in neutron
scattering and for tests of nuclear models [1–5].
The present paper describes our development of an

improved Ramsey setup, with the aim to perform an
accurate measurement of the spin-dependent neutron
scattering length bi;d of the deuteron. This quantity
represents an important input to new effective field theories
of nuclear forces at low energy [6–8]. These theories are
model-independent and able to provide, for the first time
with an estimate of the theoretical uncertainty, reliable
predictions of many important low-energy quantities,
e.g. of processes in big-bang nucleosynthesis and stellar
fusion. Observables are calculated as systematic expansions
in terms of contact interactions, characterised by a few
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1Lanthanum magnesium nitrate, La2Mg3ðNO3Þ12 � 24H2O.

F.M. Piegsa et al. / Nuclear Instruments and Methods in Physics Research A 589 (2008) 318–329 319
so-called low-energy constants (LECs) that are determined
by experiments. Best suited LECs to describe three-nucleon
(3N) interactions, due to the absence of the Coulomb force,
are the binding energy of the triton and the doublet
neutron–deuteron (nd) scattering length b2;d. The reason of
the high sensitivity of the latter to 3N forces is the absence
of Pauli blocking in the doublet channel, since the incident
neutron has its spin anti-parallel to the one bound in the
deuteron. While the triton binding energy is known with an
accuracy of 5� 10�7, the experimental knowledge of the nd
doublet scattering length is only 6% [9]. This has motivated
the present development to determine this crucial quantity
with high-accuracy in an experiment proposed in Ref. [10].
The nd doublet scattering length can be obtained from a
linear combination of the coherent and the incoherent
ones, bc;d and bi;d. The former one is already known very
accurately and was recently even further improved in an
interferometric measurement at NIST [11].

The first two sections of this article briefly recall the
concept of the pseudomagnetic field and how Ramsey’s
technique is used to measure the pseudomagnetic preces-
sion angle. Next we describe in detail the components and
the stabilisation of the Ramsey apparatus currently
employed at the cold, polarised neutron beam FUNSPIN
at the Paul Scherrer Institute. The performance of the
apparatus is demonstrated with the results of two selected
measurements in the final section. The apparatus described
here is an improved version of the facility used previously
in Saclay.

2. The pseudomagnetic field

The pseudomagnetic field is an intuitive way to describe
the effect of a nuclear polarised target on the neutron spin.
The s-wave scattering of a slow neutron by a nucleus is
described by the bound scattering length b,

b ¼ bc þ
2biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IðI þ 1Þ
p ~s � ~I (1)

consisting of a spin-independent part with the coherent

scattering length bc, and a spin-dependent component with
the incoherent scattering length bi, with ~s and ~I denoting
the spins of the neutron and the nucleus [1]. Neutrons
passing through a sample of polarised nuclei sense a spin-
dependent Fermi potential VF;spin, which is proportional to
bi of the polarised nuclear species [12]. This potential due to
the nuclear interaction can be expressed as

VF;spin ¼ Nbi
4p_2

mn

ffiffiffiffiffiffiffiffiffiffiffi
I

I þ 1

r
~P �~s ¼ �~B� �~mn, (2)

where mn, gn and ~mn are the mass, the gyromagnetic ratio
and the magnetic moment of the neutron. I is the spin of
the nuclear species, present with number density N and
polarisation vector ~P. The proportionality ~mn ¼ gn_~s is
used to express the potential as an effective interaction
between ~mn and a pseudomagnetic field ~B�. The interaction
thus has the same form as that of ~mn with a real magnetic
field and therefore leads to the same effects, such as the
pseudomagnetic analogue of Larmor precession with an
angular frequency o� ¼ �gnB�. Considering a polarised
sample with a typical number density N ¼ 5� 1022 cm�3 of
hydrogen (deuterium) atoms [13,14], the corresponding
pseudomagnetic fields are B�p � 3:1 � Pp T (B�d � 0:6 � Pd T),
where Pp (Pd) is the polarisation of the protons
(deuterons).
The existence of a pseudomagnetic field was predicted by

Barishevskii and Podgoretskii from an analysis of the
neutron optical properties of a polarised target [15]. A
resonance experiment by Abragam et al. [16] provided the
first experimental demonstration using a sample of
dynamically polarised protons in LMN.1 Later pseudo-
magnetic precession detected with a Ramsey apparatus
became a standard tool to determine incoherent scattering
lengths (for an example of measurements of 1H and 51V see
Ref. [17]).
In the general case of a sample consisting of various

nuclear species k, the pseudomagnetic precession angle is
given by

j�½rad� ¼ 2ld
X

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ik

Ik þ 1

r
PkNkbi;k, (3)

where l is the neutron de Broglie wavelength, and d is the
thickness of the polarised sample. In principle, a sample
containing a single polarised nuclear species is sufficient to
determine the incoherent scattering length of this nucleus,
if the neutron wavelength and the sample properties are
known. In order to avoid the experimental difficulties
associated with absolute measurements of number density
and nuclear polarisation, which would limit considerably
the final accuracy, we will adopt the method proposed in
Ref. [10], which relies on a relative measurement employing
a sample containing both protons and deuterons.
3. Ramsey’s resonance method of separated oscillating fields

This section recalls the basic features of Ramsey’s
method [18] and provides formulas for the dependence of
the observed signals from geometrical parameters, field
strength and the width of the neutron wavelength
distribution (instrumental parameters). A sketch of the
Ramsey apparatus is shown in Fig. 1. A polarised neutron
beam passes through a static magnetic field ~B0 in which
two phase-locked p=2-resonance spin flippers are situated.
Their fields ~B1 oscillate perpendicularly to ~B0 ðB15B0Þ,
with an angular frequency o close to the neutron Larmor
frequency o0 ¼ �gnB0. The spin flippers have a length l

and are separated by a distance L. The field amplitude B1 is
adjusted to result in a 90� rotation of the neutron spin in
each spin flipper at resonance.
We first consider the ideal case of a fully polarised
ðPn ¼ 1Þ and perfectly monochromatic beam with the
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Fig. 2. Simulated Ramsey resonance signal. Probability to detect a 180�-

flipped neutron (solid line) and the corresponding background resonance

curve (dashed line). Used simulation parameters: Pn ¼ 1, l0 ¼ 5 Å,

l ¼ 10mm, L ¼ 80mm! Df � 8:5 kHz, FWHM � 88:6 kHz.

Fig. 1. Ramsey’s resonance method of separated oscillating fields for cold

neutrons at resonance condition. Polarised neutrons ð~NÞ travel in

x-direction through a constant magnetic field ~B0 pointing in z-direction.

The neutron spins precess freely with their Larmor frequency o0 ¼ �gnB0

across a distance L between two p=2-resonance spin flippers of the length l

where their spin gets turned by 90� each.
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wavelength l0 ¼ h=mnv0, where h is the Planck constant, v0
is the neutron velocity, and mn is the neutron mass. With
the resonance condition D ¼ o� o0 ¼ 0 exactly fulfilled,
the first spin flipper rotates the neutron spin into the plane
perpendicular to ~B0. The subsequent Larmor precession
stays in phase with the oscillating fields, and the second
p=2-spin flipper thus completes the spin flip by 180�. For
small deviations from D ¼ 0 the spin will still be rotated by
about 90� in the first spin flipper, but subsequently run out
of phase with the field in the second flipper. If, for example,
an additional phase shift of 180� occurs, the neutron spin
will be turned back in its initial direction.2 The spin
component antiparallel to the incoming polarisation as a
function of D exhibits a characteristic wiggle pattern. It can
be described by Eq. (A.11) derived in Appendix A, which
gives the probability WðDÞ for a 180� spin flip. This would
be seen as an intensity oscillation after a polarisation
analyser, as shown in Fig. 2. The theoretical difference Df

between two frequencies, where the probability for a 180�

flip has a maximum, is given by

Df �
h

mnl0L
1þ

4

p
l

L

� ��1
for Lbl. (4)
2This is easily understood, if one considers the spin flip process in the

reference frame rotating with the angular frequency o.
Further off resonance, one observes a damping of the
amplitudes of the intensity oscillations due to the decreas-
ing efficiency of the spin flippers. A formula for the
‘‘background resonance’’ part of the whole Ramsey signal
is given in Eq. (A.14) and shown as a dashed line in Figs. 2
and 3. Its width depends on the time t the neutron spends
in the spin flippers and is found numerically,3

FWHM [Hz] �
1:12

t ½s�
�

4:43� 106

l0 ½Å� � l ½mm�
. (5)

So far we have not taken into account an additional
precession angle j� of the neutron spin between the spin
flippers, such as caused by the pseudomagnetic field of a
nuclear polarised target. For a perfectly monochromatic
beam it leads to a corresponding phase shift of the
oscillatory part of the Ramsey signal, keeping the envelope
of the wiggles unaffected.
Considering the case where the neutron beam has a

wavelength distribution pðlÞ, things become more compli-
cated due to the velocity dependence of j�,

j�ðlÞ ¼ j�0 �
l
l0

, (6)

where j�0 is the precession angle of a neutron with
wavelength l0. The resulting spread of j� around j�0 leads
to a modification of the envelope of the Ramsey signal,
whereas the phase shift of the wiggles within the envelope is
still given by j�0 (for symmetric pðlÞ). The corresponding
probability W0 for a 180� flip, given in Eq. (A.12), also
takes a non-perfect neutron polarisation Pn into account.
Examples of Ramsey signals for a wavelength distribution
Dl=l0 ¼ 0:06 are shown in Fig. 3. As a result, the limited
monochromacy of the beam imposes practical limits to the
maximum phase shift, beyond which the wiggles become
undetectable.
A perfectly homogeneous constant magnetic field ~B0 is

not possible to provide. Indeed it is only necessary that the
average field along the neutron flight path L between the
spin flippers is equal to the field B0;rf at the sites of the spin
flippers,

hB0i ¼
1

L

Z lþL

l

j~B0ðxÞjdx ¼ B0;rf (7)

because the validity of this equation already assures that
the neutron spins precess on average in phase with the
oscillatory fields of the spin flippers at D ¼ 0. This means
that one has rather to cope with the stabilisation of the
magnetic field than with providing a very high homo-
geneity.

4. The Ramsey apparatus

In this section we describe the actual setup of our
Ramsey apparatus at the FUNSPIN beamline at the Paul
Scherrer Institute [19].
3Calculated from Eq. (A.14) with W ¼ 1
4
.
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Fig. 3. Simulated Ramsey signals with an assumed Gaussian wavelength distribution with Dl=l0 ¼ 0:06 (respectively: sl=l0 ¼ 0:026). The damped

oscillations move along the background resonance curve (dashed line) if the additional precession angle increases. (a) j�0 ¼ 0�, (b) j�0 ¼ 900�,

(c) j�0 ¼ 1800� and (d) j�0 ¼ 2700�. Further simulation parameters: Pn ¼ 1, l0 ¼ 5 Å, l ¼ 10mm, L ¼ 80mm.

Fig. 4. Scheme of the principle setup of the Ramsey apparatus. The white

polarised neutron beam (N) is monochromised by a NiTi-supermirror (M)

and afterwards passes two p=2 radio frequency spin flipper coils (C0, C00)

and the sample (S), which are placed between the pole pieces of a magnet

(P). Finally the spin of the neutron is analysed in an analysing bender (A)

and detected in a 3He-gas tube detector (D).

Fig. 5. Left: picture of an opened p=2-spin flipper (shielded brass case—

size: 101:5� 109� 46mm3). The rf coil consisting of 0.8mm thick silver

wire is wound on a Macors cylinder with a pitch of one turn permm.

Variable capacitors are used to tune the resonance circuit to about 73

MHz and to match it to 50O. Right: scheme of the circuit. L0 and R are

the inductance and the ohmic resistance of the coil. C ¼ 1:::5 pF and

Cx ¼ 20:::300 pF are the tunable capacitors and Cc serves as a coupling

capacity to obtain a signal used for the feedback loop.

4This large magnetic field is required by the dynamic nuclear

polarisation method employed to polarise the sample (see Section 5.2).
5This distance corresponds roughly to the diameter of the pole shoes,

which are specially shaped to help to fulfil the condition given in Eq. (7).
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4.1. Overview

A scheme of the setup is shown in Fig. 4. The white
polarised cold neutron beam (N) is first collimated by
several diaphragms and afterwards deflected by about 3:2�

on a neutron NiTi bandpass supermirror (M) [20]. This
produces a Gaussian-shaped neutron wavelength spectrum
with maximum at about 5 Å and a relative width Dl=l0 of
approximately 0.06 (FWHM). Along the beam path two
radio frequency (rf) coils, ðC0Þ and ðC00Þ, acting as p=2-spin
flippers with length l ¼ 7mm and diameter 14mm each,
are placed in the 48mm wide gap between the pole pieces
(P) of an electromagnet, which provides the static field4

B0 � 2:5T. The sample (S) is placed between the p=2-spin
flippers, which are separated by a distance5 L � 80mm.
They form the inductances of two matched resonant
circuits for frequencies around 73MHz, provided by a rf
signal generator and two rf amplifiers (see Fig. 5). Their
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Fig. 6. Neutron flipping ratio measurements to adjust the rf field of one p=2-spin flip coil. (a) shows a scan of the oscillating field amplitude B1 at a steady

frequency of 72.815MHz, (b) shows a scan of the rf frequency for a fixed field amplitude B1 ¼ 0:8 a.u.. The frequency where the flipping ratio has a

minimum, here approximately 72.81MHz, corresponds to the neutron Larmor frequency o0 in the steady magnetic field B0 at the position of the rf coil.

Fig. 7. Feedback loop of the two rf p=2-spin flippers (F1 and F2). The

loop stabilises the relative phase W as well as the individual amplitudes of

both flippers. The three output lines (1, 2 and 3) are continuously sampled

by a data aquisition system and are used as a feedback to control the

adjustable phase-shifter and the adjustable attenuators.
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linear oscillating fields B01ðtÞ ¼ 2B01 cosðotÞ and B001ðtÞ ¼

2B001 cosðotþ WÞ are perpendicular to the static field and
stabilised in phase and amplitude by a feedback loop. A
field amplitude of about 10G is required for a p=2-flip, for
which the rf amplifiers have to deliver a power of about
5W each. Therefore both rf coils have to be cooled with
compressed air. Neutron polarisation analysis is performed
with a supermirror bender (A), which has an analysing
power of about 90% for 4 Å neutrons.6 Finally, the
neutrons are detected in a 3He-gas detector (D). Count
rates are normalised to the incident flux by a 235U fission
chamber with a dead time of 2:4ms and an efficiency of
1:5� 10�3.

At the beginning of an experiment, the resonance
frequencies of the spin flippers have to be tuned to the
neutron Larmor frequency in the static field, o0 ¼ �gnB0.
Subsequently the amplitudes of the oscillating fields B01 and
B001 need to be adjusted separately such that each spin
flipper turns the neutron spin by p=2. This is done by
tuning the flipping ratio FR ¼ Nþ=N� to unity for one
p=2-spin flipper, while the other p=2-spin flipper is turned
off and vice versa (see Fig. 6). Nþ and N� are the count
rates for the adiabatic p-flipper of the beamline switched on
and off.

Our desired accuracy of about 1� for the phase shift
determination of the Ramsey signals requires high stability
of the magnetic field and the spin flippers. The following
sections describe how this is achieved.

4.2. Magnetic field stabilisation

The static magnetic field B0 is monitored by means of the
proton resonance signal of a commercial NMR probe
operated at room temperature and placed in between the
pole pieces of the magnet close to the sample position. The
6This has been measured at the neutron reflectometer Morpheus at

SINQ at the Paul Scherrer Institute.
field of 2.5 T can be kept constant within 	0:8mT using the
monitored signal to regulate the current in the magnet.
As visible from the simulated data in Fig. 2 signal

oscillations have a period of Df � 8:5 kHz. The field
stability stated before corresponds to an uncertainty of
the neutron Larmor frequency of 	23Hz. Hence the phase
stability due to the magnetic field is about 	23Hz=
8:5 kHz� 360� � 	1�.

4.3. Spin flipper feedback loop

The relative phase W and the individual amplitudes B01
and B001 of the two rf p=2-spin flippers are stabilised using a
feedback loop, which is shown in Fig. 7. The rf signal
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Fig. 9. Excerpt of the complete Ramsey signal shown in Fig. 8. The

sinusoidal fit (dashed curve) on the 21 data points delivers a value of

Df ¼ ð8:74	 0:03ÞkHz for the period and of j ¼ ð�87:5	 0:4Þ� for the

phase with respect to 72.81MHz.
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of a signal generator is split into two branches by a
3 dB-splitter. The signal in each branch passes an
attenuator adjustable by means of a DC voltage. The
signal in branch one is then further attenuated to
compensate the throughput loss of the controllable
phase-shifter in branch two. Both signals then serve as
inputs for two þ50 dB rf power amplifiers feeding the
matched resonant circuits of the spin flippers (see Fig. 5).

By capacitive coupling each spin flipper delivers a rf
output signal. This allows us on one hand to determine the
amplitudes of the oscillating magnetic fields using rf
detector diodes. On the other hand the signals feed a
phase-detector, which produces a DC voltage proportional
to sin W. The three DC voltages, from the two diodes and
the phase-detector, are permanently sampled by a data
aquisition system, which controls the input voltages of the
adjustable phase-shifter and the adjustable attenuators by
means of a PID algorithm.

With this feedback loop the DC voltages corresponding
to the field amplitudes (output lines 1 and 2 in Fig. 7) can
routinely be held stable within better than 	0:2% for each
spin flipper, while the DC voltage corresponding to the
relative phase (output line 3 in Fig. 7) can be held zero
within 	10mV. By observing the phase of the Ramsey
signal for systematically misadjusted settings for the
amplitudes and the relative phase W, one can link these
DC voltage stabilities to the phase stability of the Ramsey
signal (see Section 4.5). This leads to a conservatively
estimated phase stability of the Ramsey signal, firstly of
	0:1� as a result of the stabilisation of W, and secondly of
	0:1� for each spin flipper due to the stabilisation of the
oscillating field amplitude. This yields an overall stability of
the Ramsey signal due to the spin flippers of better than
	0:3�.
4.4. Ramsey frequency scans

In Fig. 8a typical Ramsey signal is shown, which was
obtained with our setup by sweeping the frequency of the
p=2-spin flippers in steps of 0.5 kHz from 72.75 to
Fig. 8. Typical Ramsey resonance signal (frequency scan) measured with

our setup without additional phase shift (j�0 ¼ 0�). The measuring time for

each data point was approximately 12 s, which corresponds to about 105

neutron counts on the monitor detector.
72.87MHz. Contrary to the simulated data shown before,
the neutron spin analyser in our setup is transparent for the
opposite spin component, which leads to an inversion of
the Ramsey signal. Further comparison of the simulated
and measured data reveals that the period of the Ramsey
oscillations of Df � 8:74 kHz is close to the expected value
of about 8.5 kHz, whereas the width of about 70 kHz of the
background resonance curve is much narrower than the
FWHM of about 128 kHz expected according to Eq. (5) for
rf coils with length l ¼ 7mm. This might be due to the
fringe fields extending out of the coils along the beam path,
resulting in an effective coil length leff of about 12.5mm.
The quality of the measured Ramsey signals, with a

signal-to-noise ratio of about 6 in the centre of the
resonance, is very well suited to achieve a high precision
in determining phase shifts. For that purpose it is more
efficient to measure only the centre part of the resonance
rather than to sweep over the whole resonance. This saves
measuring time without loss in precision. A scan of 21 data
points with a frequency step size of 0.5 kHz samples more
than one oscillation of the Ramsey signal and can be fitted
using a simple sinusoidal fit, like presented in Fig. 9.
Instabilities have a minor influence on the accuracy of the
phase extraction, because although the individual data
point might scatter statistically with 	1�, for a whole set of
21 data points this reduces by a factor

ffiffiffiffiffi
21
p

, i.e. to a
statistical uncertainty of only 	0:2�.

4.5. Two-beam method and relative phase stability

The accuracy of the phase measurement can be strongly
improved if one analyses simultaneously two separate
beams passing through the Ramsey apparatus. By sub-
traction of the phases measured for each of the beams, a
common phase drift can be efficiently removed, as it might
for instance be caused by day–night temperature changes in
the experimental hall. Practically, the incident beam is split
into an upper and a lower beam, with adjustable diameters
of typically 3mm and a distance of the beam-centres of
6mm, by means of Cd diaphragms placed before the first
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Fig. 10. Demonstration of the phase stability of the Ramsey setup. Plots (a) and (b) show the individual phases of the upper and the lower neutron beam

measured continuously over almost 24 h. Plot (c) shows the phase difference of the two beams. The jumps in the individual beam phases and the phase

difference from the third to the fifth hour and at the end of the measurement run are due to intentional misadjustments of the spin flippers. For the reason

of visibility only every second measured point is plotted.
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and after the second p=2-spin flipper. The upper beam
passes through the sample, whereas the lower beam serves
as a reference passing by the sample. They are detected
behind the spin analysing bender by two 3He-gas detectors.

To avoid mixing of the two neutron beams, the incident
beam must already be well collimated before it gets split up
by the Cd diaphragms. This is achieved by several 6Li
diaphragms placed in front of the monochromating super-
mirror. The mixing of the beams thus could be kept below
1%. Simulations show that in the worst case of a 90� phase
difference between the two beams, this would lead to a
phase shift of about 0:6� in the Ramsey signals of both
partial beams, assuming they have the same intensity. The
beam mixing was measured by comparing the background
corrected count rate in the detector of one beam with and
without covering its hole in the first beam splitting
diaphragm.
Employing this two-beam method a long measurement

was performed to test the stability. We repeatedly
measured Ramsey signals during almost 24 h, like the one
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Fig. 11. Ramsey signals measured with a 3mm thick n-polystyrene sample

at four different temperatures: T s ¼ 1:82 K (white triangles), T s ¼ 1:50K
(filled triangles), T s ¼ 1:27K (white circles) and T s ¼ 1:09K (filled

circles). With decreasing temperature the proton polarisation increases,

which leads to a shift of the Ramsey oscillations to higher frequencies.

7Note that for very low temperatures and high magnetic fields the

nuclear relaxation time, i.e. the exponential time constant for the spin

system to reach thermal equilibrium, can become very long.
8The neutron wavelength was not measured, but just calculated from

the reflectivity curve of the supermirror.
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shown in Fig. 9. The individual phase of each beam and the
phase difference was then determined. Fig. 10 shows that
indeed the phases of the individual beams exhibit a
common drift, leading to a constant phase difference,
which scatters around the mean value by 	0:36�, while the
average length of the errorbars, occurring only from the
sinusoidal fit, is 0:65�. The two jumps in the phase
difference at the end of the whole run, each of about 2�,
were caused by an intentional drastic increase of the
oscillating field amplitude of the first spin flipper, first by
6% and then by 12%.

As expected, changes in the relative phase W of the spin
flippers lead to jumps in the individual beam phases, but
have no influence on the phase difference. This was tested,
while during the time from the third to the fifth hour the set
value of the DC voltage for the relative phase of the spin
flippers was intentionally misadjusted three times from 0 to
þ0:5V, �0:5 and þ1:0V and finally back to 0V (output
line 3 in Fig. 7). More extensive studies showed that a
change of this set value delivers equal-sized phase shifts in
both beams by ð8:1	 0:1Þ�=V. Note that the measured
stability of 	10mV given in Section 4.3 then corresponds
to a stability of better than 	0:1�.

The absence of an effect in the phase difference plot
demonstrates the power of the two-beam method, which
was already successfully employed in a measurement of the
incoherent scattering length of 3He [21].

5. Measurements with nuclear polarised samples

In this section two examples for the measurement of the
pseudomagnetic precession angle j� due to polarised nuclei
in solid polystyrene samples are presented. To reach a
sizeable nuclear polarisation the samples have to be cooled
to very low temperatures. This has been accomplished in
the first case by employing a 4He evaporation cryostat
reaching temperatures down to 1K and in the second case
by a 3He–4He dilution refrigerator of the same type as
described in Ref. [22] with a base temperature below
100mK. In the latter case the sample was placed inside a
target cell filled with liquid 4He, thermally anchored to the
mixing chamber of the cryostat, to avoid that the neutron
beam has to pass through the strongly absorbing 3He. Both
cryostats were specially designed to firmly fit in between the
pole pieces of our 2.5 T magnet and are equipped with a
NMR system to observe the nuclear polarisation of the
samples [23].

5.1. Proton spins in thermal equilibrium

The first sample was a 14� 14� 3mm3 n-polystyrene
slab with a weight of 606mg. It was placed in the upper
beam of the Ramsey apparatus such that the neutrons see a
target thickness of d ¼ 3mm. The proton spins in the
sample were polarised by the so-called brute force method.
In the high temperature limit the achievable spin polarisa-
tion is proportional to B=T s (Curie’s law), where B is the
applied magnetic field and T s is the temperature of the
nuclear spin system.7 In the case of proton spins the
thermal equilibrium polarisation is given by

Pp ¼
gp_B

2kBT s
¼ 0:102% �

B ½T�

T s ½K�
, (8)

where gp is the gyromagnetic ratio of the proton and kB is
Boltzmann’s constant. Inserting Eq. (8) into Eq. (3) and
using the proton number density of our sample of
approximately 0.08mol/ml and a neutron wavelength of
5 Å, leads to a pseudomagnetic phase shift due to the
proton spins of

j� � 102� �
d ½mm�

T s ½K�
. (9)

Fig. 11 shows several Ramsey signals taken at different
temperatures of the sample. A temperature decrease causes
an increase of the proton spin polarisation, which shifts the
Ramsey oscillations to higher frequencies. The phase shifts
of these oscillations could be determined with an accuracy
of 	0:9�. In Fig. 12 these are plotted against the inverse
temperature 1=T s, showing the expected linear behaviour
with a slope of ð115	 3stat 	 8systÞ

�K=mm, which is close
to the estimated value given in Eq. (9). The systematical
error is due to uncertainties of the neutron wavelength8 and
of the nuclear number density at 1 Kelvin and is estimated
to be about 7% in total.

5.2. Dynamically polarised protons and deuterons

In the second example a deuterated plastic disc made out
of d8-polystyrene was used as a sample [14]. The 25mg disc
had a diameter of 5mm, a thickness of 1.2mm and the
degree of deuteration was about 97%. The deuterons and
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Fig. 12. Phase shift due to the decrease of the sample temperature and

linear fit (dashed line). The phase shift of the data point measured at

T s ¼ 1:82K has been arbitrarily set to 0�. Errorbars: temperature 	1%

and phase shift 	0:9�.
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the residual protons were polarised by means of the
dynamic nuclear polarisation method [1], which transfers
the electron polarisation of admixed paramagnetic centres9

to the nuclear spins. Proton (deuteron) polarisations of
typically 40% (20%) were used and measured with a
continuous wave Q-meter NMR system. Inserting these
polarisation values and sample properties in Eq. (3) yields a
pseudomagnetic phase shift of approximately j� ¼ j�p þ
j�d � 550� þ 1650� ¼ 2200� for 5 Å neutrons.

Fig. 13a shows the corresponding Ramsey signals for an
unpolarised and dynamically polarised sample. The latter
has a damped amplitude due to the large pseudomagnetic
shift and possible polarisation inhomogeneities of the
nuclei in the sample [24]. Due to asymmetric signal
envelopes of the Ramsey oscillations at such large phase
shifts (compare simulations in Fig. 3), it can be advanta-
geous not to apply the standard sinusoidal fit as in the
previous cases, but the following function:

aðnÞ ¼ a0 þ a1 � sin
2p
Df
� n� j

� �
� ð1þ a2 � nþ Oðn2ÞÞ, (10)

where a2a0 is the first order coefficient of an expansion
describing the signal deformation. Careful comparisons
between the two fit functions (sinusoidal and aðnÞ) show
that the resulting value for the phase shift is equal within
the errors of the fits, but that w2 is smaller for aðnÞ (here:
w2aðnÞo2).

Using Eq. (10) to fit the two signals in Fig. 13a delivers
two slightly different periods of the Ramsey oscillations:
Df unpol ¼ 8:82 kHz and Df pol ¼ 8:89 kHz. In order to
determine the phase shift, one therefore has to define the
period to a common fixed value Df fixed prior to the fit of
both signals. Fig. 13b demonstrates that the relative phase
shift of the sample beam Djsample ¼ jsample;pol � jsample;unpol
9In this case the polystyrene was doped with deuterated nitroxyl radicals

(d-TEMPO).
is almost unaffected by the choice of Df fixed and that the fit
error becomes minimal around Df fixed ¼ 8:85 kHz.
For the signals shown in Fig. 13a the relative phase shift

is Djsample ¼ ð�29:2	 0:6Þ� for the sample beam and
Djref ¼ ðþ10:7	 0:3Þ� for the reference beam, which
passes by the sample. The total pseudomagnetic phase
shift is given by

Djtotal ¼ n� 360� þ Djsample � Djref , (11)

where n can either be determined by successive destruction
of the nuclear polarisation employing saturating rf-pulses
or by nuclear polarisation decay (see Fig. 14). In this case
n ¼ 6, which leads to Djtotal ¼ ð2120:1	 0:7Þ�, where the
relative accuracy of 4� 10�4 is only due to the fit error.
Besides the fit, one has to take into account errors caused

by the following sources:


 The phase stability of the Ramsey apparatus, which was
shown to be 	0:36� in Section 4.5.



 The beam separation, leading in the worst case to be
	0:6� � 2, where the factor two takes into account that
the beam mixing produces phase shifts in the sample and
the reference beam.



 The nuclear polarisation relaxation during the measure-

ment of the Ramsey signal, which leads to a signal drift
of about 18�=h at j� � 2000�. This yields a systematical
error of about 	1:5�, for a measurement time of 10min
per Ramsey signal consisting of 21 points. This error can
be entirely attributed to the sample and is independent
of the Ramsey apparatus.

Hence we get the total phase shift of Djtotal ¼ ð2120:1	
0:7fit 	 0:4stab 	 1:2beam 	 1:5sampleÞ

�, with four separate
contributions of the error. The total relative accuracy of
2� 10�3 is already about a factor 2 better than would be
needed to reach the present precision of bi;d.
Furthermore, it is possible to either correct for the

systematic errors or to reduce them by improving the beam
separation and by slowing down the nuclear polarisation
relaxation, e.g. by decreasing the sample temperature.

6. Discussion and conclusions

The Ramsey apparatus described here is a powerful tool
to determine precession angles of the neutron spin, e.g. due
to pseudomagnetic fields. The use of the two-beam method
enables us to measure phase shifts independently from
global drifts. The reachable absolute accuracy due to the fit
and the stability is about 1� within about 10min of
measuring time. The maximal observable phase shift is
limited by the monochromacy of the neutron beam, which
causes damping of the signal amplitude. With Dl=l0 ¼ 0:06
it is definitely possible to measure phase shifts of up to
2500�, which yields a relative accuracy of about 4� 10�4.
This accuracy would allow for an improvement in pre-
cision of bi;d and the linearly dependent b2;d by up to a
factor of 8.
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Fig. 13. (a) Ramsey signals for an unpolarised sample (filled circles) and a polarised sample leading to a phase shifted and damped signal (white circles)

with the corresponding fits using Eq. (10) (dashed lines). (b) Dependence of the relative phase shift in the sample beam for different fixed values of the

Ramsey oscillation period Df fixed. The dashed horizontal line marks a relative phase shift of �29:2�.

Fig. 14. Example of a determination of n by measuring the neutron counts

at a fixed frequency of the Ramsey signal during the decay of the nuclear

polarisation at 2.5T and 1.1K. Here the exponential decay time of the

polarisation was approximately ð5:4	 0:2Þ min and was measured using

NMR. The total phase shift at t ¼ 0 was approximately 1350�.
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The following modifications of the Ramsey apparatus
might lead to a further increase of the accuracy:


 A reduction of Dl=l0 is advantageous to be able to
measure even larger phase shifts than stated above. Of
course this will be accompanied by longer measurement
times due to the lower neutron flux.



 An increase (decrease) of the neutron wavelength l0

results in a setup, which is more (less) sensitive to spin-
dependent potentials (see Eq. (3)).



 The use of spin flippers with transverse flat-coils, instead

of the longitudinal solenoid coils, could provide more
localised and homogeneous rf fields. This would allow
for larger neutron beam cross-sections (higher flux) and
would also reduce leff , which yields a wider ‘‘back-
ground resonance’’ of the Ramsey signal.




10This is not possible with our apparatus, due to the special design of the

pole shoes and the size of the cryostat situated between the spin flippers.
11An alternative derivation of this can be found in Ref. [27].
An improvement of the phase stability of the Ramsey
apparatus would be very challenging, since the present
absolute stability of the magnetic field is already kept
constant within 	0:8mT. An option would only be a
decrease of the distance between the rf coils10 L, which
yields an increase of Df (see Section 4.2).



 The magnetic field value of B0 ¼ 2:5T of our apparatus

is required by the dynamic nuclear polarisation mechan-
ism employed to polarise the sample. However B0 can
also be chosen differently to best meet the appropriate
conditions for other possible experiments, e.g. measure-
ments of the neutron spin precession due to other
polarised nuclei or other non-pseudomagnetic effects.

Thus it appears that the parameters of a Ramsey apparatus
need to be changed according to the requirements of the
performed measurement. The setup described here might
also be useful for the determination of other spin-
dependent scattering lengths or other possible purposes,
as presented in Ref. [25].
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Appendix A. Simulation of the Ramsey apparatus using

time-evolution operators

The derivation given here differs slightly from that of
Ramsey in Ref. [26] and employs the method of the time-
evolution operators.11 Instead of solving the Schrödinger
equation to calculate the development of a state jcðtÞi
under the action of a Hamiltonian, which consists of a
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12Normalised wavelength distribution:
R1
0 pðlÞdl ¼ 1.
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stationary and a time-dependent part

ĤðtÞ ¼ Ĥ0 þ V̂ ðtÞ (A.1)

one can derive the time-evolution operator of the system
[28], using the equation of motion

i_
q
qt

Ûðt; t0Þ ¼ ĤðtÞÛðt; t0Þ, (A.2)

where jcðtÞi ¼ Ûðt; t0Þjcðt0Þi and jcðt0Þi is an arbitrary
initial state. The general solution of Eq. (A.2) is given by

Ûðt; t0Þ ¼ exp �
i

_

Z t

t0

Ĥðt0Þdt0
� �

. (A.3)

In our case we have a magnetic interaction of the magnetic
moment of a spin 1

2
particle, the neutron, with a magnetic

field ~B ¼ ðBx;By;BzÞ, which can be written as

ĤðtÞ ¼ �
_

2
gn~s � ~B ¼ �

_

2
gn

Bz Bx � iBy

Bx þ iBy �Bz

 !
,

(A.4)

where ~s is the vector of the Pauli matrices and gn is the
gyromagnatic ratio of the neutron. The Ramsey apparatus
can be divided in three regions (see Fig. 1). In the first (I)
and the third (III) region a circular oscillating field with the
amplitude B1 flips the neutron spin by p=2 into and out of
the plane perpendicular to the steady magnetic field
~B0 ¼ ð0; 0;B0Þ. In the second (II) region the neutron spin
precesses freely in this plane with the Larmor frequency o0

and inside the sample with the shifted angular frequency
o0 þ Do� respectively. The time each of the rf fields acts on
the neutron spin shall be denoted as t and the time the
neutron spends between the flippers as T. j� is the
wavelength dependent pseudomagnetic precession angle
due to the polarised nuclei in the sample as defined in
Eq. (3).

To simplify the problem we consider our system in
the reference frame rotating with the angular frequency o,
which is the frequency of the two rf fields [29]. One
finds then for these three regions the following effective
fields:

~BI;eff ¼
1

gn
ð�o1; 0;DÞ (A.5)

~BII;eff ¼
1

gn
ð0; 0;DÞ (A.6)

~BIII;eff ¼
1

gn
ð�o1 cos W;�o1 sin W;DÞ, (A.7)

where D ¼ o� o0 and o1 ¼ �gnB1 and W is a fixed phase
angle between the two circular oscillating fields. These
effective magnetic fields have to be inserted now in
Eqs. (A.3) and (A.4). If one takes also the additional
precession angle j� into account one finds for the time-
evolution operators setting t0 ¼ 0

Û Iðt; 0Þ

¼

cos
Ot
2
þ i

D
O
sin

Ot
2

�i
o1

O
sin

Ot
2

�i
o1

O
sin

Ot
2

cos
Ot
2
� i

D
O

sin
Ot
2

0
BB@

1
CCA (A.8)

Û IIðT ; 0Þ ¼
eþði=2ÞðTDþj�Þ 0

0 e�ði=2ÞðTDþj�Þ

 !
(A.9)

Û IIIðt; 0Þ

¼

cos
Ot
2
þ i

D
O

sin
Ot
2

�i
o1

O
e�iW sin

Ot
2

�i
o1

O
eiW sin

Ot
2

cos
Ot
2
� i

D
O

sin
Ot
2

0
BB@

1
CCA (A.10)

with O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ o2

1

q
. Without loss of generality we set

W ¼ 0�, so that Û Iðt; 0Þ ¼ Û IIIðt; 0Þ. The probability W for

a transition from a spin state j "i ¼ 1
0

� �
to j #i ¼ 0

1

� �
is

given by

W ¼ jh# jÛ III � Û II � Û Ij "ij
2 ¼ jh# jÛ totalj "ij

2

¼
4o2

1

O2
sin2

Ot
2

D
O

sin
Ot
2

sin
TDþ j�

2
� cos

Ot
2

�

� cos
TDþ j�

2

�2
. (A.11)

The condition for the spin flippers to induce p=2 flips is
o1 ¼ p=ð2tÞ. Eq. (A.11) is identical to Eq. (12) in Ref. [26]
and applies to only a single neutron velocity and a fully
polarised neutron beam. Since the times t and T are
proportional to the neutron wavelength one has to perform
an average over the wavelength distribution12 pðlÞ of the
neutrons and one also has to take the imperfection of
the neutron polarisation Pn into account. Then one finds

the probability W0 to detect the spin state j #i behind the
Ramsey apparatus as

W0 ¼

Z 1
0

pðlÞ
1þ Pn

2
jh# jÛ totalj "ij

2

�

þ
1� Pn

2
jh# jÛ totalj #ij

2

�
dl. (A.12)

Additionally two approximations can be applied on
Eq. (A.11). The first one considers only frequencies very
close to the resonance, so that o1bD:

W!
D
o1

sin
TDþ j�

2
� cos

TDþ j�

2

� �2
. (A.13)

From this, one can estimate the frequency distance Df

between two oscillation maxima, using only the first order
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term of the Taylor expansion of the tan-function around
p=2. The result is given in Eq. (4) in Section 3. The other
important approximation delivers the shape of the back-
ground resonance curve of the Ramsey signal (see Fig. 2),
on substituting the fast oscillating terms sinTDþ j�=2 and

sin2TDþ j�=2 by their average values 0 and 1
2

W!
2o2

1

O2
sin2

Ot
2

D
O

� �2

sin2
Ot
2
þ cos2

Ot
2

" #
. (A.14)
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