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An Evaluation of an Object-Oriented Paradigm for Land

Use/Land Cover Classification*

Rutherford V. Platt and Lauren Rapoza
Gettysburg College

Object-oriented image classification has tremendous potential to improve classification accuracies of land use
and land cover (LULC), yet its benefits have only been minimally tested in peer-reviewed studies. We aim
to quantify the benefits of an object-oriented method over a traditional pixel-based method for the mixed
urban–suburban–agricultural landscape surrounding Gettysburg, Pennsylvania. To do so, we compared a
traditional pixel-based classification using maximum likelihood to the object-oriented image classification
paradigm embedded in eCognition Professional 4.0 software. This object-oriented paradigm has at least
four components not typically used in pixel-based classification: (1) the segmentation procedure, (2) nearest
neighbor classifier, (3) the integration of expert knowledge, and (4) feature space optimization. We evaluated
each of these components individually to determine the source of any improvement in classification accuracy.
We found that the combination of segmentation into image objects, the nearest neighbor classifier, and
integration of expert knowledge yields substantially improved classification accuracy for the scene compared
to a traditional pixel-based method. However, with the exception of feature space optimization, little or no
improvement in classification accuracy is achieved by each of these strategies individually. Key Words: image
classification, land cover, land use, object-oriented.

La clasificación de imágenes orientadas a objetos tiene un enorme potencial para mejorar la precisión en la
clasificación de los usos y coberturas del suelo (land use and land cover, LULC); sin embargo, sus beneficios
solo se han probado mı́nimamente en estudios revisados por expertos en el campo. Nuestro objetivo es
cuantificar los beneficios de un método orientado a objetos en comparación con un método tradicional basado
en pixeles en la región mixta urbana-suburbana-agrı́cola que circunda a Gettysburg, Pensilvania. Para hacerlo,
comparamos la clasificación tradicional basada en pixeles usando la máxima probabilidad con el paradigma
de la clasificación por imágenes orientadas a objetos integrada en el programa eCognition Professional 4.0.
Este paradigma orientado a objetos tiene al menos cuatro componentes que tı́picamente no se usan en la
clasificación basada en pixeles: (1) el procedimiento de segmentación, (2) el clasificador por el vecino más
cercano, (3) la integración de conocimiento experto, y (4) la optimización del espacio de trabajo. Evaluamos
individualmente cada uno de estos componentes para determinar la fuente de cualquier mejora en la precisión
de la clasificación. Encontramos que la combinación de la segmentación en objetos imágenes, el clasificador
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por el vecino más cercano y la integración de conocimiento experto dan como resultado una precisión en la
clasificación substancialmente mejorada para la escena cuando se compara con el método basado en pixeles.
Sin embargo, con excepción de la optimización del espacio de trabajo, se logra poca o ninguna mejora en la
precisión de la clasificación con cada una de estas estrategias implementadas de manera individual. Palabras
clave: clasificación de imágenes, cobertura del suelo, uso del suelo, orientado a objetos.

O bject-oriented image classification at its
simplest level is the classification of ho-

mogeneous image primitives, or objects, rather
than individual pixels. Object-oriented image
classification has numerous potential advan-
tages. If carefully derived, image objects are
closely related to real-world objects. Once
these objects are derived, topological relation-
ships with other objects (e.g., adjacent to,
contains, is contained by, etc.), statistical sum-
maries of spectral and textural values, and shape
characteristics can all be employed in the clas-
sification procedures (Benz et al. 2004). De-
spite many advances, object-oriented methods
are still computationally intensive and the im-
provement in classification accuracy over tradi-
tional methods is not always clear.

The idea of object-based image analysis
has been around since the early 1970s (de
Kok, Schneider, and Ammer 1999), but im-
plementation lagged due to lack of computing
power. On a limited basis, specialized object-
oriented software packages were employed in
the 1980s to extract roads and other linear fea-
tures (McKeown 1988; Quegan et al. 1988).
These methods of analysis were difficult to em-
ploy and inefficient compared to pixel-based
methods, which began to employ advanced
techniques such as fuzzy sets, neural networks,
and textural measurements. Since the 1990s,
computing power has increased and high spa-
tial resolution imagery has become common,
prompting a new emphasis on object-oriented
techniques (Franklin et al. 2003).

Recently, object-oriented image classifica-
tion has been successfully used to identify
logging and other forest management activi-
ties using Landsat ETM+ imagery (Flanders,
Hall-Beyeer, and Pereverzoff 2003); to map
shrub encroachment using QuickBird imagery
(Laliberte et al. 2004); to quantify landscape
structure using imagery from Landsat ETM+,
QuickBird, and aerial photography (Ivits et al.
2005); to map fuel types using Landsat TM
and Ikonos imagery (Giakoumakis, Gitas, and
San-Miguel 2002); and to detect changes in
land use from imagery in the German national

topographic and cartographic database (Walter
2004).

Few direct comparisons of object-oriented
and traditional pixel-based methods have
been published, and these primarily appear in
conference proceedings. One study found that
object-oriented methods yield similar classifi-
cation accuracy to traditional methods, but that
segmentation of pixels into objects makes the
classification more “map-like” by reducing the
number of small disconnected patches (Will-
hauck 2000). Another study compared four
change detection methods: traditional post-
classification, cross-correlation analysis, neural
networks, and an object-oriented method
(Civco et al. 2002). The study found that there
was no single best way to perform change anal-
ysis, and suggested that future object-oriented
methods based on “multitemporal objects”
could improve on current results. A third study
compared pixel-based and object-oriented land
use classification for a scene in the Black Sea
region of Turkey and found that the object-
oriented classification method had a substantial
advantage over the pixel-based parallelepiped,
minimum distance, and maximum-likelihood
classifiers (Oruc, Marangoz, and Buyuksalih
2004). A comparison of land cover classi-
fication in northern Australia found that
object-oriented classification yielded improved
classification accuracy, 78 percent versus 69.1
percent (Whiteside and Ahmad 2005). Overall,
the literature suggests either that object-
oriented methods have a real advantage or that
they demonstrate little advantage but much
promise.

These studies all use various versions of
the eCognition software (recently renamed
Definiens), a specialized image classification
software package that integrates hierarchical
object-oriented image classification, fuzzy
logic, and other strategies to improve classifi-
cation accuracy. At the time of this research,
eCognition Professional 4.0 was the most fully
developed object-oriented classification soft-
ware available. The object-oriented paradigm
in eCognition has at least four components
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not typically used in traditional pixel-based
classification methods: (1) the segmentation
procedure, (2) nearest neighbor classifier,
(3) the integration of expert knowledge,
and (4) feature space optimization. We
evaluate the object-oriented paradigm in
eCognition for classification of an urban–
suburban–agricultural landscape surrounding
Gettysburg, Pennsylvania.

Our research questions are as follows: First,
to what extent does the eCognition object-
oriented paradigm increase land use/land cover
(LULC) classification accuracy over a tradi-
tional pixel-based method for this scene? Sec-
ond, how much of the increased accuracy,
if any, is due to segmentation of image ob-
jects, the classifier, expert knowledge, or fea-
ture space optimization? This study is distinct
from previous studies because it independently
evaluates these four elements of the eCognition
object-oriented paradigm to determine their ef-
fect on classification accuracy.

Methods

Study Area and Data
The study area is 148 km2 in size, and lo-
cated in a rural area northwest of the Balti-
more and Washington, DC, metropolitan ar-
eas (Figure 1). It encompasses the borough of
Gettysburg, the Gettysburg National Military
Park, and surrounding areas. The area is lo-
cated in the southwest corner of the Newark-
Gettysburg basin, which is situated between
the South Mountain (an extension of the Blue
Ridge Mountains) to the west and the Susque-
hanna River to the east. The area comprises ex-
tensive agriculture divided by narrow wooded
bands and, increasingly, low-density residen-
tial development. We acquired a georectified
IKONOS satellite image of the study area taken
25 July 2003. The image has a spatial resolu-
tion of 4 m and has four spectral bands: blue
(480.3 nm), green (550.7 nm), red (664.8 nm),
and near infrared (805.0 nm).

Classification Models
The image was classified into seven LULC
classes: forest, fallow, water, recreational
grasses, commercial/industrial/transportation,
cultivated, and residential (Table 1). These
classes represent the most common and impor-

tant land uses and covers in the area. We did not
use a more detailed classification scheme such
as the one used for the National Land Cover
data set (NLCD; Vogelmann et al. 2001) be-
cause many of the NLCD classes are missing
from the area (e.g., ice/snow, shrublands), rare
(e.g., high-density development), or not distin-
guishable using a single date image. Two to four
image objects were selected as training samples
for each class for use in the classification pro-
cedures described in the next section.

A total of eight image classifications were
constructed to compare the object-oriented
paradigm to a traditional classification (Table
2). Model 1 represents the best object-oriented
model, model 2 represents the traditional pixel-
based classification, and models 3 through 8
fall somewhere in between. We compared pairs
of models that differed in one key respect; ei-
ther in terms of analysis level (pixel or ob-
ject), classifier (maximum likelihood or nearest
neighbor), expert knowledge (used or not), or
feature space optimization (used or not). These
terms and the specific differences between
models are discussed in the following sections.

Analysis Level: Pixel versus Object
Traditional image classification methods clas-
sify individual pixels, whereas object-oriented
classification methods classify homogeneous
regions, or image objects. The process of ag-
gregating pixels into image objects is known as
image segmentation. For the models operating
at the object level, the image used in this study
was segmented using the fractal net evolution
approach (FNEA), which is a multifractal ap-
proach implemented in the eCognition image
processing software (Baatz and Schaepe 2000;
Baatz et al. 2004). FNEA is a pairwise clustering
process that finds areas of minimum spectral
and spatial heterogeneity given a set of scale,
color, and shape parameters (Benz et al. 2004).

The size of the image objects is determined
by the scale parameter, a unitless number re-
lated to the image resolution that describes
the maximum allowable heterogeneity of image
objects. As the scale parameter increases, the
size of the image objects also increases (Benz
et al. 2004). The color and shape parameters
are weights between zero and one that deter-
mine the contribution of spectral heterogeneity
(in this case red, green, blue, and near infrared)
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Figure 1 Study area.

and shape to the overall heterogeneity that is
to be minimized. The smoothness and com-
pactness parameters are additional weights be-
tween zero and one that determine how shape is
calculated.

Spectral heterogeneity is defined as the sum
of standard deviations of each image band.
Minimizing only spectral heterogeneity results
in objects that are spectrally similar, but that
might have fractally shaped borders or many
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Table 1 Land use/land cover classes

Class Description

Forest Closed canopy forest
Fallow Field with little or no vegetation
Water Stream, lake, or pond
Recreational grasses Mowed grass in a suburban or urban context, might have scattered trees
Commercial/industrial/transportation Parking lots, industrial sites, strip malls, and associated infrastructure
Cultivated Cropland, pasture, and unmowed grasses
Residential Single or multifamily housing

branched segments (Baatz et al. 2004). To ad-
dress this issue, the segmentation process can
also incorporate shape in terms of compactness
or smoothness. Compactness is defined as the
ratio of the border length and the square root of
the number of object pixels. Smoothness is de-
fined as the ratio of the border length and the
shortest possible border length derived from
the bounding box of an image object (Baatz
et al. 2004).

The “best” compactness and smoothness pa-
rameters depend on the size and types of ob-
jects to be extracted. For example, an object
representing an agricultural field would ide-
ally have high smoothness and compactness,
whereas an object representing a riparian area
along a stream would ideally have low smooth-
ness and compactness.

It is important to note that there is no
such thing as optimal parameters for image
segmentation (Benz et al. 2004). For object-
level models, the normal procedure is simply
to iteratively try different parameters until
the resulting objects are appropriately sized
and shaped for the particular task. After
testing many possible parameters, we used
the following: scale: 50, color: 0.7, shape:
0.3, smoothness: 0.5, compactness: 0.5. The
resulting objects closely corresponded to the
boundaries of fields, woodlots, strip malls, and

other elements of interest in the image (Fig-
ure 2). For pixel-level models, we segmented
the image into single-pixel objects.

Image Classifier
The models are divided according to what clas-
sifier they use: maximum likelihood or near-
est neighbor. The maximum likelihood clas-
sifier calculates the probability that a pixel
or object belongs to each class and then as-
signs the pixel or object to the class with
the highest probability (Richards 1999). It is
one of the most commonly used classifiers be-
cause of its simplicity and robustness (Platt and
Goetz 2004). The Environment for Visualiz-
ing Images (ENVI) image processing software
was used for maximum likelihood classification.
The nearest neighbor classifier is a part of the
eCognition object-oriented paradigm and as-
signs each object to the class closest to it in
feature space.

Expert Knowledge
The models are also divided according to
whether or not they employ expert knowledge
(i.e., user-developed classification rules) in
addition to the classifier (nearest neighbor
classifier). Traditional classification methods
typically do not employ expert knowledge,
whereas the eCognition object-oriented

Table 2 Summary of classification models

Analysis Expert Feature
Model level Classifier knowledge space

1 Object Nearest neighbor Yes Spectral
2 Pixel Maximum likelihood No Spectral
3 Object Nearest neighbor No Spectral
4 Pixel Nearest neighbor No Spectral
5 Object Maximum likelihood No Spectral
6 Pixel Nearest neighbor Yes Spectral
7 Object Nearest neighbor No Optimized
8 Pixel Nearest neighbor No Optimized
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Figure 2 Before and after segmentation.

paradigm integrates membership functions
with the nearest neighbor classifier. Member-
ship functions allow objects to be classified
using simple rules related to spectral, shape,
and textural characteristics or on relationships
between neighboring objects. For example,
we might observe that recreational grasses are
typically surrounded by developed areas like
commercial/industrial/transportation or resi-
dential. Knowing this, a membership function
can be constructed that assigns each object a
value between zero and one depending on the
percentage of that object that is surrounded by
an object defined as developed (Figure 3). For
each object, the lowest of the two probabilities
(the membership function probability and the
nearest neighbor probability) is selected as the
actual probability of belonging to a class. The
closer this number is to one, the more likely
the object will be classified as recreational
grasses. For models that use expert knowledge,
membership functions were defined for every
class except for water (Table 3).

Feature Space Optimization
Finally, models were divided into those that use
feature space optimization and those that do
not. Typically classification is conducted us-
ing the spectral or textural bands chosen by
the analyst. In the feature space optimization
procedure, the user first specifies which fea-
ture space bands should be included in the

analysis. For objects, the feature space bands
might number in the hundreds and include
spectral data, hierarchical data, shape data, and
textural data. For pixels, the feature space is
considerably smaller and is limited to spectral
and textural data. Feature space optimization
then calculates all the bands and sorts them
based on how well they separate the classes.

Figure 3 Example of a membership function.
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Table 3 Membership functions

Class Factors promoting membership Factors limiting membership

Commercial/industrial/transportation — Relative border to residential
Recreational grasses Relative border to residential or

commercial/industrial/
transportation

Relative border to residential or
commercial/industrial/transportation

Residential Adjacent to recreational grasses,
low homogeneity

Relative border to commer-
cial/industrial/transportation,
cultivated, or fallow

Cultivated Rectangular fit Relative border to residential
Fallow Rectangular fit Relative border to residential
Forested — Relative border to residential
Water — —

The thirty feature space bands that best sep-
arated the LULC classes were used to clas-
sify the image for models that used feature
space optimization. The bands beyond these
thirty did little to help separate classes and so
were not used in the classification. Textural
data were computed following Haralick, Shan-
mugam, and Dinstein (1973). The grey level
co-occurrence matrix describes how different
combinations of pixel values occur within an
object (Baatz et al. 2004). The grey level differ-
ence vector, another way to measure texture,
is the sum of the diagonals of the grey level
co-occurrence matrix.

At the object level (model 7), the following
six bands best separated the classes according
to the feature space optimization:

� Grey level co-occurrence matrix correla-
tion of band 3 (red). This measures the
correlation between the values of neigh-
boring pixels in the red band.

� Shape index: perimeter divided by four
times the square root of the area of an
object.

� Degree of skeleton branching: describes
the highest order of branching of skele-
tons, defined as lines that connect the
midpoints of a Delaunay triangulation of
an object. High values indicate a complex
geometrical structure of the object (Benz
et al. 2004).

� Maximum pixel value of band 4 (near in-
frared).

� Grey level difference vector entropy of
band 3 (red). This measures whether pix-
els have similar brightness levels in the red
band.

� Grey level co-occurrence matrix entropy
of band 1 (blue). This measures whether
pixels have similar brightness levels in the
blue band.

At the object level (model 8), the following
six bands best separated the classes according
to the feature space optimization:

� Grey level co-occurrence matrix mean of
band 1 (blue). This measures the mean
frequency of pixel values in combination
with neighboring pixel values in the blue
band.

� Grey level co-occurrence matrix contrast
of band 4 (near infrared). This measures
the amount of variation in the near in-
frared band within an object.

� Grey level co-occurrence matrix variance
of band 4 (near infrared). Similar to grey
level co-occurrence matrix contrast, this
measures the dispersion of variation in the
near infrared band within an object.

� Grey level co-occurrence matrix mean of
band 4 (near infrared). This measures the
mean frequency of pixel values in combi-
nation with neighboring pixel values in the
near infrared band.

� Mean difference to neighbor, band 4 (near
infrared). This measures the mean differ-
ence between a pixel value and its neighbor
in the near infrared band.

� Grey level co-occurrence matrix homo-
geneity of band 1 (blue). This measures
degree that the object displays a lack of
variation in the blue band.

One possible issue with feature space op-
timization is overfitting—fitting a statistical
model with too many parameters such that the
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Table 4 Confusion matrix, model 1

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

1 Object Nearest neighbor Yes Spectral 72% 71% 78% 13% 9%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 94 0 4 1 0 8 0 107 88%
Cultivated 3 101 2 18 12 3 0 139 73%
Fallow 14 1 14 2 0 7 0 38 37%
Forested 0 4 1 85 6 5 0 101 84%
Recreational grass 3 18 0 7 54 17 0 99 55%
Residential 8 0 2 1 0 23 0 34 68%
Water 1 0 0 0 0 2 28 31 90%
Total 123 124 23 114 72 65 28 549 71%
User’s acc. 76% 81% 61% 75% 75% 35% 100% 72%

Note: CIT = Commercial/industrial/transportation.

model fits the training data much better than
the validation data. To minimize overfitting,
we excluded bands with nonnormalized units
of length or area; objects of any size can belong
to any class.

Classification Evaluation
To evaluate classification accuracy of the eight
models, a random sample of 300 points was
generated across the image in areas that are not
training sites. This random sample was used
to determine the relative proportion of each
class within the image. Following Congalton
and Green (1999), the random sample was sup-
plemented by a stratified random sample of 250
points. This ensured that each class in the clas-
sified image contained at least thirty validation
points. All 550 validation points were overlain
on the original imagery and on 0.6 m georecti-
fied aerial photography taken in spring 2003.
An image analyst identified the LULC class
at the object level and the pixel level, always
deferring to the IKONOS imagery for classes
that might have changed between the times the
two images were taken. A second image analyst
revisited any points that were tagged as “ques-
tionable” by the first analyst. If the two analysts
disagreed, the point was visited in the field by
the first analyst to make a final determination
of the class. A total of thirty-five points were
visited in the field.

Using all 550 points, a confusion matrix was
generated to compare the predicted LULC
classes to the actual LULC classes. The diago-
nal of the matrix shows the number of objects
or pixels where the predicted class is the same

as the actual class, whereas the off-diagonal val-
ues show the number of objects or pixels where
the predicted class is different from the actual
class. For each model, user’s accuracy (proba-
bility that a site in the classified image actually
represents that class on the ground) and pro-
ducer’s accuracies (probability that a site on the
ground was classified correctly) were calculated
for each class. The average user’s accuracy, av-
erage producer’s accuracy, and weighted agree-
ment (percent correct weighted by the actual
occurrence in the landscape, as estimated by the
300-point random sample) were also reported.

Note that our accuracy reporting does not
include Kappa, which attempts to correct for
chance agreement, because this measure is
difficult to interpret, has an arbitrary definition
of chance agreement, and conflates different
sources of error (Pontius 2000). Instead, we
reported weighted disagreement due to loca-
tion (percentage of objects or pixels incorrectly
classified because the predicted location was
incorrect) and weighted disagreement due
to quantity (percentage of objects or pixels
incorrectly classified because the predicted
quantities of classes were incorrect). Both
percentages are weighted by prevalence of the
classes in the image.

Results and Discussion

Representing the eCognition object-oriented
paradigm, model 1 (Table 4) operates on
the object level, uses the nearest neighbor
classifier, incorporates expert knowledge, and
uses only the spectral feature space. The
weighted agreement (percent correct weighted
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by prevalence of the class) was 78 percent, the
highest of all the models (Table 4). The user’s
accuracy was over 70 percent for all classes ex-
cept fallow and residential. Because residential
is a rare class that is spectrally similar to many
other classes, areas known to be residential
were only 68 percent likely to be classified
correctly. Producer’s accuracy was over 70
percent for all classes except fallow, residential,
and recreational grasses. Sites known to be
fallow were misclassified 37 percent of the
time because of the spectral similarity to com-
mercial/industrial/transportation. The classes
of commercial/industrial/transportation, culti-
vated, forested, and water were over 70 percent
accurate from both the user’s and producer’s
perspective. The weighted disagreement due
to location is 13 percent and the weighted dis-
agreement due to quantity is 9 percent, showing
that neither type of error predominates.

Representing pixel-based image classifica-
tion, model 2 operates on the pixel level, uses
the maximum likelihood classifier, does not in-
corporate expert knowledge, and uses spectral
feature space (Table 5). The weighted agree-
ment is 64 percent, which is 14 percent lower
than model 1. Model 2 has a lower classification
accuracy than model 1 for every class except fal-
low, which has a higher user’s and producer’s
accuracy than model 1. Whereas weighted dis-
agreement due to quantity is similar between
model 1 and 2 (9 percent versus 12 percent),
the weighted disagreement due to location is
clearly superior in model 1 compared to model
2 (13 percent versus 24 percent).

Analysis Level: Pixel versus Object
To evaluate the effect of analysis level we com-
pared model 3 (Table 6) to model 4 (Table 7).
Both models use the nearest neighbor classifier,
omit expert knowledge, and use spectral feature
space, but model 3 operates at the object level
whereas model 4 operates at the pixel level.
The weighted agreement is similar for both
models—60 percent for model 3 and 61 per-
cent for model 4. Weighted disagreement due
to location is identical (17 percent) and similar
for weighted disagreement due to quantity (23
percent versus 22 percent). The accuracy within
classes varies, however. These results suggest
that classifying objects rather than pixels does
not necessarily improve classification accuracy.

Classifier
To evaluate the effect of the classifier we
compared model 3 (Table 6) to model 5
(Table 8). Both models operate at the object
level, omit expert knowledge, and use spectral
feature space. They differ only in terms of the
classifier: model 3 uses the nearest neighbor
classifier, whereas model 5 uses the maximum
likelihood classifier. Model 3 has a lower
weighted agreement than model 5 (60 percent
versus 71 percent). Model 3 also has a similar
weighted disagreement due to location (17 per-
cent versus 18 percent) and a higher weighted
disagreement due to quantity (23 percent ver-
sus 11 percent). This suggests that maximum
likelihood does a better job in predicting the
quantity of classes, but is comparable to nearest

Table 5 Confusion matrix, model 2

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

2 Pixel Maximum likelihood No Spectral 63% 53% 64% 24% 12%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 77 1 2 0 1 26 0 107 72%
Cultivated 0 64 8 0 51 16 0 139 46%
Fallow 1 0 30 0 0 7 0 38 79%
Forested 0 10 2 53 26 10 0 101 52%
Recreational grass 1 26 3 7 42 20 0 99 42%
Residential 16 0 2 0 2 14 0 34 41%
Water 7 0 0 0 0 12 12 31 39%
Total 102 101 47 60 122 105 12 549 53%
User’s acc. 75% 63% 64% 88% 34% 13% 100% 63%

Note: CIT = Commercial/industrial/transportation.
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Table 6 Confusion matrix, model 3

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

3 Object Nearest neighbor No Spectral 62% 61% 60% 17% 23%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 62 0 24 0 0 21 0 107 58%
Cultivated 0 73 3 1 47 15 0 139 53%
Fallow 1 2 32 0 0 3 0 38 84%
Forested 0 10 2 68 18 3 0 101 67%
Recreational grass 1 51 7 2 20 18 0 99 20%
Residential 3 1 11 0 0 19 0 34 56%
Water 2 0 1 0 0 0 28 31 90%
Total 66 137 80 71 85 79 28 549 61%
User’s acc. 94% 53% 40% 96% 24% 24% 100% 62%

Note: CIT = Commercial/industrial/transportation.

neighbor in predicting the location. However,
because several less common classes (water and
residential) are poorly classified in model 5, the
average producer’s accuracy for this model (58
percent) is lower than for model 3 (61 percent).

Expert Knowledge
To evaluate the effect of expert knowledge in-
tegrated into membership functions, we com-
pared model 1 (Table 4) to model 3 (Table 6)
and model 6 (Table 9) to model 4 (Table 7).
Within each pair, the models differ only in
terms of whether they use membership func-
tions in addition to the nearest neighbor clas-
sifier (models 1 and 6 do, models 3 and 4 do
not). The first pair of models operates at the
object level and the second set operates at the
pixel level.

At the object level, membership functions
improve classification accuracy considerably.
Model 1 is higher than model 3 in terms of

weighted agreement (78 percent versus 60
percent), average user’s accuracy (72 percent
versus 62 percent), and average producer’s
accuracy (71 percent versus 61 percent). In
particular, cultivated, residential, and recre-
ational grasses are improved from both the
user’s and producer’s perspective when mem-
bership functions are used. The classification
accuracy of water remains the same because
membership functions are not used in either
model. Model 1 is superior to model 3 in
terms of weighted agreement due to location
(13 percent versus 17 percent) and quantity
(9 percent versus 23 percent). This shows that
membership rules especially help predict the
quantity of objects in each class.

At the pixel level, there is no improvement
in classification accuracy when membership
functions are used. Models 4 and 6 are similar
in weighted agreement (61 percent versus 60
percent). Model 6 has a higher average user’s

Table 7 Confusion matrix, model 4

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

4 Pixel Nearest neighbor No Spectral 60% 62% 61% 17% 22%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 71 3 11 1 0 19 2 107 66%
Cultivated 0 80 10 2 37 10 0 139 58%
Fallow 1 3 31 0 0 3 0 38 82%
Forested 0 17 5 69 9 0 1 101 68%
Recreational grass 1 42 8 10 28 10 0 99 28%
Residential 10 0 9 1 0 14 0 34 41%
Water 1 0 1 0 0 0 29 31 94%
Total 84 145 75 83 74 56 32 549 62%
User’s acc. 85% 55% 41% 83% 38% 25% 91% 60%

Note: CIT = Commercial/industrial/transportation.
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Table 8 Confusion matrix, model 5

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

5 Object Maximum likelihood No Spectral 69% 58% 71% 18% 11%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 84 0 1 0 0 22 0 107 79%
Cultivated 0 79 10 0 41 9 0 139 57%
Fallow 1 0 31 0 0 6 0 38 82%
Forested 0 6 0 61 32 2 0 101 60%
Recreational grass 2 25 1 2 52 17 0 99 53%
Residential 18 1 2 0 0 13 0 34 38%
Water 10 0 0 0 0 10 11 31 35%
Total 115 111 45 63 79 125 11 549 58%
User’s acc. 73% 71% 69% 97% 66% 10% 100% 69%

Note: CIT = Commercial/industrial/transportation.

accuracy than model 4 (73 percent versus 60
percent), but a lower average user’s accuracy
(60 percent versus 62 percent). An important
difference between the two models is the
weighted disagreement due to location and
quantity. For model 6, the weighted disagree-
ment due to location is 7 percent, whereas
the weighted disagreement due to quantity is
33 percent. Classes like residential and recre-
ational grasses are severely underpredicted by
model 6. In contrast, for model 4, the weighted
disagreement due to location is 17 percent,
whereas the weighted disagreement due to
quantity is 22 percent. Compared to model 6,
model 4 does a better job predicting the number
of pixels in each class, but a worse job predict-
ing the locations of these pixels. Overall the
results show that these membership functions
do not improve classification at the pixel level.

Feature Space Optimization
To evaluate the effect of feature space opti-
mization, we compared model 3 (Table 6) to
model 7 (Table 10) and model 4 (Table 7) to
model 8 (Table 11). The first pair operates on
the object level, whereas the second pair op-
erates on the pixel level. Models 3 and 7 use
spectral feature space only, whereas models 7
and 8 use feature space optimization. Feature
space optimization benefits classification accu-
racy at both the object and pixel level. At the
object level, model 7 has a weighted agree-
ment of 71 percent, whereas model 3 has a
weighted agreement of 60 percent. At the pixel
level, model 8 has a weighted agreement of
67 percent, whereas model 4 has a weighted
agreement of 61 percent. In neither case do the
models outperform model 1, which uses expert
knowledge but not feature space optimization.

Table 9 Confusion matrix, model 6

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

6 Pixel Nearest neighbor Yes Spectral 73% 60% 60% 7% 33%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 88 4 12 1 0 0 2 107 82%
Cultivated 0 125 11 3 0 0 0 139 90%
Fallow 3 3 32 0 0 0 0 38 84%
Forested 0 24 5 71 0 0 1 101 70%
Recreational grass 1 73 12 12 1 0 0 99 1%
Residential 20 0 13 1 0 0 0 34 0%
Water 1 0 1 0 0 0 29 31 94%
Total 113 229 86 88 1 0 32 549 60%
User’s acc. 78% 55% 37% 81% 100% 0% 91% 63%

Note: CIT = Commercial/industrial/transportation.
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Table 10 Confusion matrix, model 7

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

7 Object Nearest neighbor No Optimized 57% 56% 71% 20% 9%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 31 0 34 0 0 40 2 107 29%
Cultivated 0 72 24 8 22 10 3 139 52%
Fallow 1 0 33 0 0 4 0 38 87%
Forested 0 11 5 47 19 19 0 101 47%
Recreational grass 2 6 22 0 23 43 3 99 23%
Residential 3 0 6 0 0 24 1 34 71%
Water 2 0 1 0 0 1 27 31 87%
Total 39 89 125 55 64 141 36 549 56%
User’s acc. 79% 81% 26% 85% 36% 17% 75% 57%

Note: CIT = Commercial/industrial/transportation.

Limitations
This analysis has several limitations. First, the
results should not automatically be extended
to other contexts; they are partially a function
of the spatial and spectral resolution of the im-
age, the composition of the scene, the classifica-
tion system, and the segmentation parameters.
However, the results are consistent with the
growing body of literature that shows an advan-
tage for object-oriented classification methods
(Willhauck 2000; Oruc, Marangoz, and Buyuk-
salih 2004; Whiteside and Ahmad 2005). Sec-
ond, although we tested several aspects of the
object-oriented image classification paradigm
in eCognition, we cannot be sure that we max-
imized the software’s potential. For example,
the segmentation parameters and membership
functions we used are not necessarily optimal.

A third limitation is that, despite the sim-
ple classification system, many of the classes

might be difficult to distinguish spectrally. Part
of the potential difficulty in separating these
LULC classes is due to the spatial and spectral
resolution of the imagery. High spatial reso-
lution imagery, like the imagery used in this
study, can be difficult to classify due to the high
spectral heterogeneity within classes (Wood-
cock and Strahler 1987; Donnay 1999; Lalib-
erte et al. 2004). Furthermore, multispectral
IKONOS imagery contains only four spectral
bands and thus has poorer spectral resolution
than many other common multispectral sensors
such as Landsat 7.

Conclusions

This study started with two research ques-
tions: (1) to what extent object-oriented image
classification increases LULC classification ac-
curacy over a traditional pixel-based method

Table 11 Confusion matrix, model 8

Model

Analysis

level Classifier

Expert

knowledge

Feature

space

Average

user’s

acc.

Average

prod.

acc.

Weighted

agreement

Weighted

disagree

location

Weighted

disagree

quantity

8 Pixel Nearest neighbor No Optimized 59% 63% 67% 22% 11%

CIT Cultivated Fallow Forested

Recreational

grass Residential Water Total

Prod.

acc.

CIT 65 0 7 0 0 35 0 107 61%
Cultivated 0 71 16 4 40 8 0 139 51%
Fallow 1 3 31 0 1 2 0 38 82%
Forested 0 15 4 61 8 13 0 101 60%
Recreational grass 1 18 8 6 26 40 0 99 26%
Residential 5 0 3 0 0 26 0 34 76%
Water 1 0 0 0 0 4 26 31 84%
Total 73 145 75 83 74 56 32 549 63%
User’s acc. 89% 49% 41% 73% 35% 46% 81% 59%

Note: CIT = Commercial/industrial/transportation.



D
ow

nl
oa

de
d 

B
y:

 [A
ss

oc
ia

tio
n 

of
 A

m
er

ic
an

 G
eo

gr
ap

he
rs

 - 
R

ef
er

er
 U

R
L 

fo
r A

nn
al

s 
of

 th
e 

A
ss

oc
ia

tio
n 

of
 A

m
er

ic
an

 G
eo

gr
ap

he
rs

 a
nd

 T
he

 P
ro

fe
ss

io
na

l G
eo

gr
ap

he
r] 

A
t: 

14
:3

2 
21

 J
an

ua
ry

 2
00

8 

Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification 99

for this scene, and (2) how much of the in-
creased accuracy, if any, is due to segmenta-
tion, the classifier, expert knowledge, or fea-
ture space optimization. The answer to the
first question is clear: we found that the object-
oriented paradigm implemented in eCognition
yields a considerable improvement in classifi-
cation accuracy over a traditional method for
this scene. Weighted agreement of the best
object-oriented method (model 1) was 78 per-
cent, which is 14 percent higher than the model
representing the traditional pixel-based classifi-
cation (model 2). That said, the object-oriented
paradigm is no magic bullet: when classes over-
lap spectrally as in this study, high classification
accuracy is still difficult to achieve.

The answer to the second question is that
the combination of the object analysis level, the
nearest neighbor classifier, and expert knowl-
edge yields the highest classification accuracy.
Therefore, for the most part, we cannot at-
tribute the advantage of the object-oriented
paradigm to any one of these methods in isola-
tion. For example, we found that the classifica-
tion of image objects rather than pixels by itself
yields no increase in weighted agreement (∼60
percent weighted agreement in each case for
models 3 and 4). Furthermore, using the near-
est neighbor classifier rather than the maximum
likelihood classifier actually decreases weighted
agreement (60 percent for model 3, 71 percent
for model 5) and does a worse job predicting
the quantity of classes (weighted disagreement
of 23 percent for model 3 and 14 percent for
model 5).

When paired with a nearest neighbor classi-
fier, membership functions yielded a large im-
provement in classification accuracy at the ob-
ject level (weighted agreement of 78 percent for
model 1 compared to 60 percent for model 3).
At the pixel level, there is no improvement in
classification when membership functions are
used (weighted agreement of ∼60 percent for
both models 4 and 6). It is important to un-
derscore membership functions are not exclu-
sive to object-oriented classification; they can
be implemented for pixel-based classification
as well. In this study, most of the member-
ship functions are related to relative border and
adjacency, which can be applied at both the
pixel and object level. However, membership
functions are more broadly applicable at the
object level because certain variables commonly
used in membership functions, such as shape,

are only meaningful for objects. Feature space
optimization led to an increase in classifica-
tion accuracy at both the object and pixel level,
but feature space optimization models still per-
formed poorer than model 1, which integrated
expert knowledge.

The study shows that, for this image and clas-
sification system, the object-oriented paradigm
improves classification accuracy considerably.
Unlike previous studies, we investigated the
source of this advantage and found that much
of the benefit is derived from the ability to
integrate expert knowledge through member-
ship functions, which is only effective at the
object level. To simplify the comparison with
traditional image classification methods, we
used a flat classification scheme and a single
level of image objects. A next step in the study
will be to develop a nested hierarchy of image
objects and classify land cover at each level
using information from subobjects (e.g., trees,
grass) and superobjects (e.g., city park, forest).
This would reduce direct comparability with
pixel-based methods, but allow us to take
full advantage of multiresolution capabilities
of eCognition and potentially further boost
classification accuracy. �
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