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Abstract

Although relationships between fragmentation of urban development and other forms of administrative and land cover
fragmentation are important, they are poorly understood. This research aimed to better understand these relationships in order
to inform land use planning in the Roaring Fork/Colorado River Corridor of Colorado. Change in fragmentation of urban
development between 1985 and 1999 was modeled as a function of other forms of administrative and land cover fragmentation
using two different regression specifications. While a standard “global” regression provided a good averaged model of change
for the entire study area, a geographically weighted regression (GWR) demonstrated how the process changed locally over
space. Results of the global regression showed that the intercept was close to zero and therefore the fragmentation of urban
development was expected to be close to zero in the absence of other forms of fragmentation. Results of the GWR showed that
the relationships between change in fragmentation of urban development and other fragmentation variables (initial edge density
of urban development, edge density of public/private interface, farmland density and road density) varied significantly within
the study area. By modeling this variation, GWR helped to identify ways to reduce fragmentation of urban development
in two different regions of the study area. The analysis suggested that fragmentation of urban development in one area,
Aspen–Basalt, was more strongly driven by amenity-related variables, while in the New Castle area fragmentation was more
strongly driven by infrastructure-related variables. Ultimately, local analysis may help fine-tune “one-size-fits-all” land use
polices for specific regions.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The disciplines of landscape ecology and land use
planning are both concerned with the connection
between the spatial configuration of the landscape
(form) and the processes that operate on the landscape
(function). Despite this similarity, the disciplinary
goals are often quite different. Landscape ecologists
have typically attempted to quantify and understand
landscape form and function, while land use planners
have aimed to control form and function (Antrop,
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2001). Furthermore, landscape ecologists tradition-
ally have worked in “privileged” landscapes that were
chosen for certain attributes such as the absence of
built structures. In contrast, land use planners have
often studied rapidly changing landscapes with an
extensive and complex human footprint (Antrop,
2001). Increasingly, these two different perspectives
are converging as landscape ecologists seek out work
in human-dominated ecosystems and land use plan-
ners look for a better understanding of how the built
environment interacts with ecosystems. In a broad
sense, research at the nexus of these disciplines seeks
to understand the link between form and function,
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Table 1
Environmental/social issues associated with fragmentation

Urban development Regulatory Ownership

Habitat fragmentation Boundaries not appropriate for addressing
environmental and social concerns

Conflict with public uses (wildlife, logging, recreation)

Sprawl Conflicting regulations Increased development pressure next to public lands
Decreased agricultural output Annexation/tax base conflicts Conflict between private land uses (e.g.

residential with industrial or agricultural)
Invasive species Development pressure in areas of weaker

regulation
Land use plans harder to implement

both socioeconomic and biophysical, often at broader
scales than traditional site-specific studies (Musacchio
and Coulson, 2001; Klepeis and Turner, 2001; Grimm
et al., 2000).

An important area of convergence between land
use planning and landscape ecology is an emphasis
on fragmentation, a measure of form that is associ-
ated with a number of environmental and social func-
tions (Table 1). Fragmentary urban development, for
example, may reduce the productivity of agricultural
lands (Brabec and Smith, 2002); degrade, isolate, or
shrink habitat patches (Olff and Ritchie, 2002); de-
grade the scenic beauty of open spaces; or encourage
long, polluting commutes (Johnson, 2001). Because
of these cross-cutting issues, both land use planners
and landscape ecologists promote less fragmentary de-
velopment patterns and encourage “infill”, the utiliza-
tion of vacant land within partially developed areas
(Calthorpe, 1993; Dramstad et al., 1997).

This study aimed to answer two questions related
to fragmentation. First, how were different forms of
landscape fragmentation—administrative and land
cover—related to change in the fragmentation of ur-
ban development in the Roaring Fork/Colorado River
corridor of Colorado from 1985 to 1999? Secondly,
how can this information be used to identify ways
to reduce fragmentation of urban development in
two regions within the study area? To answer these
questions, a traditional regression and a geographi-
cally weighted regression (GWR) were constructed to
explain fragmentation of urban development. Tradi-
tional regression techniques, henceforth called global
regression, produce an average result for the entire
study area. In contrast, local analysis such as GWR
produces localized output for every observation. The
information provided by the global and local anal-
yses ultimately can help tailor land use plans to

specific regions to reduce fragmentation of urban
development.

The dependent variable in these regression models
was the change in edge density of urban development
(z edge), which measured fragmentation of urban de-
velopment. This measure of landscape form provided
important information about the function of urbaniza-
tion; a positive change inz edge indicated increasing
fragmentation characteristic of sprawl while a negative
change inz edge indicated infill.z edge was calculated
as the total length of the boundary of urbanized land
per unit area. Administrative and land cover fragmen-
tation were suspected to influencez edge by encourag-
ing or limiting urban development. Fragmentation of
administrative boundaries may affectz edge through
differential land use policy on either side of the bound-
ary. For example, amenity-minded homeowners have
increasingly moved to private lands neighboring un-
developed public lands in Colorado, thus increasing
fragmentation (Knight and Clark, 1998). Similarly, the
fragmentation of the municipal boundaries may influ-
encez edge through differential land use regulation
or taxation on either side of the boundary (Bradshaw
and Muller, 1998). Fragmentation of land cover in
the form of infrastructure (road density), attractiveness
(farm density), and physical constraints (initial edge
density of urban development) may also shapez edge.
These land cover fragmentation variables are similar
to other variables commonly used in land use mod-
els, such as distance to roads (Theobald and Hobbs,
1998) and initial land use (Landis and Zhang, 1998).
In short,z edge helps connect landscape form to urban
function and is thought to be related to other types of
administrative and land cover fragmentation.

This study makes three basic contributions. First,
it furthers understanding of the relationship between
landscape fragmentation and change in the edge
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density of urban development (z edge) in this Col-
orado landscape. Secondly, it compares global and lo-
cal regression approaches. Finally, the study provides
a substantive policy interpretation of the spatially
varying regression coefficients estimates generated
by GWR. This interpretation is important because the
literature on GWR has thus far focused on the devel-
opment of the technique and has provided only a lim-
ited interpretation of model output (Brunsdon et al.,
1996; Fotheringham and Brunsdon, 1999;
Fotheringham et al., 1998). Ultimately, this study
will show how global and local analysis can poten-
tially help planners adjust land use plans for specific
regions.

2. Background

Many studies use global models to better predict or
understand the change in land use/land cover. These
models take many forms, including spatially ex-
plicit non-economic models (e.g. cellular automata),
non-spatially explicit economic models (e.g. bit-rent
models) and spatially explicit economic models
that address spatial dependence or spatial hetero-
geneity (e.g. spatial regression models) (Irwin and
Geoghegan, 2001). In many cases, such models
provide an incomplete understanding of landscape
change. While global regression generates general
“rules” between independent and dependent variables
it does not indicate how these relationships may
change locally.

Global models of land use change often employ
commonly used logistic or ordinary least squares
(OLSs) regression techniques (Schneider and Pontius,
2001; Serneels and Lambin, 2001; Theobald and
Hobbs, 1998; Landis and Zhang, 1998; Bradshaw and
Muller, 1998). However, two specification problems
commonly appear in logistic and OLS regression
models. First, errors are often spatially autocorre-
lated, which violates the assumption of independent
observations. These violations are well documented
(Anselin, 1988; Anselin and Bera, 1998) and will not
be explicitly addressed in this study. Secondly, many
spatial models display spatial heterogeneity, in which
the fit of the model varies over space. This issue,
also called spatial non-stationarity, may be caused
by random sampling variations, true spatially varying

relationships, or misspecification often from missing
“unmeasurable” factors (Fotheringham et al., 2000).
Spatial non-stationarity is common in typical global
regression models such as the following:

Yi = α + βxi + εi (1)

where the interceptα and coefficientβ are averages
across the data set andεi is the error term for obser-
vation i. If spatial non-stationarity is presentα andβ

may be locally biased, though the model could still
produce the best linear unbiased estimate (BLUE) for
the study area as a whole.

Several regression techniques address spatial
non-stationarity, including global regression with
dummy variables, multilevel modeling, the expan-
sion method, and GWR. Though each method has
its appropriate uses, only GWR can model continu-
ous non-stationary processes and identify local “hot
spots” of non-stationarity. The first method, global
regression with dummy variables, addresses spatial
non-stationarity by modeling variation within discrete
boundaries (e.g.Serneels and Lambin, 2001). For ex-
ample, if the process of land use change is known to
operate differently within a county, a dummy variable
may be used for observations within county. Second,
a more sophisticated variation on this procedure is the
multilevel model (Duncan and Jones, 2000; Gould
et al., 1997). Multilevel models combine a “fixed”
model of the aggregate process (the first two terms on
the right side of the equation) and a “random” model
describing contextual differences (the last two terms
on the right side of the equation):

Yij = α + βxij + u0j + εij (2)

where i is an observation at placej and u0j is a
coefficient that describes contextual differences at
place j. Dummy variables and the multilevel model
framework are most appropriate for addressing spatial
non-stationarity that occurs across discrete boundaries
such as counties, municipalities and parcels.

Third, unlike simple dummy variables and multi-
level models, the expansion method models parameter
drift (change in regression coefficients over space) as
functions of other variables, such as geographic loca-
tion (Cassetti, 1972, 1997):

Yi = αi + βixi + εi (3)
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where coefficientsαi and βi are a function of geo-
graphic location such thatβi = β0 + β1ui + β2vi and
αi = α0 + α1ui + α2vi, for every locationi with co-
ordinates(ui, vi). Though useful as a tool to help im-
prove model specification, the expansion method has
limitations. For one, it fits trend surfaces—essentially
creating a more sophisticated global model—and so
reveals little about local relationships (Fotheringham
et al., 1998). Furthermore, the functional form of the
expansion equations must be assumeda priori by the
researcher and must be deterministic to avoid estima-
tion problems (Fotheringham et al., 2000). These is-
sues are resolved with GWR.

The fourth method, GWR was used to explore the
local relationships between landscape fragmentation
andz edge. GWR, like the expansion method, allows
regression coefficients to vary continuously (Brunsdon
et al., 1996; Fotheringham et al., 1998; Fotheringham
and Brunsdon, 1999). Unlike the expansion method,
however, GWR calculates coefficients for each vari-
able at every observation. Thus GWR helps to
identify “hot spots” of spatial non-stationarity that
might otherwise be obscured by trend-fitting. For
example, while the expansion method may show
that a coefficient increases east to west, GWR will
identify this trend as well as exceptions within the
trend. The details of GWR will be described in
Section 3.

Fig. 1. Roaring Fork/Colorado River Corridor.

3. Methodology

3.1. Study area

In the 1990s, an economic boom driven by tertiary
industries drove rapid land use change in the Colorado
Rockies, fragmenting land ownership and land cover
at the wildland/urban interface (Riebsame et al., 1996).
A prime example of such rapid change is the Roar-
ing Fork/Colorado River corridor, which extends from
Aspen to Parachute and includes Pitkin, Garfield, and
a part of Eagle County. Along the corridor lie wet-
lands, significant open space (grassland, shrubland,
cropland) and most of the counties’ major settlements
(Aspen, Carbondale, Glenwood Springs, Rifle). The
area is forested at higher elevations.

To explain the change in edge density of urban de-
velopment (z edge) that Roaring Fork/Colorado River
corridor experienced during 1985–1999, both a global
regression and a GWR were conducted. The study
area included 1130 km2 of private lands within 3 km
of Highways 287 and 70, from Aspen to the border of
Garfield County (Fig. 1). This area encapsulated the
most populous and dynamic part of the region, includ-
ing the corridor and adjacent privately owned forest-
land. Since public lands typically have little urban
development and are usually not under the jurisdiction
of local planners, they were omitted from the analysis.
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Table 2
Variables used in regression models

Variable Description Source Suspected relationship
with z edge

z edge Change in edge density of urban development
between 1985 and 1999

Classified imagery

dev dens Edge density of urban development in 1985 Classified imagery Negative
own dens Edge density of public/private interface US Geological Survey Positive
city dens Edge density of municipal boundaries Colorado Department of Local Affairs Positive
citydev dev dens × city dens Interaction variable Negative
farm dens Percentage land cover defined as agricultural in 1992 National land cover data set Positive
road dens Density of highways and major roads Colorado Department of Transportation Negative

The effects of public lands, however, were included
in the model as an independent variable “edge density
of public/private interface” (own dens), as described
below.

3.2. Model variables

The analysis was conducted on a random sample
comprising 1432 observations across the study area.
The two models estimated the dependent variable
z edge as a function of the independent variables de-
scribed inTable 2. These independent variables fell
into three categories: fragmentation of administration
(own dens, city dens), fragmentation of land cover
(dev dens, farm dens, road dens) and an interaction
variable (citydev). The fragmentation variables were
calculated as edge length per unit area of a circle with
0.3 km radius. Edge lengths were derived from several
data sources, including publicly available state/county
GIS data and classified Landsat imagery.

The classified Landsat imagery was created for En-
vironmental Defense by the Center for the Study of
Earth from Space (CSES) at the University of Col-
orado. A maximum likelihood classifier with a thresh-
old of 55% was used to classify images from 1985 to
1999 (both Landsat path-row 35/32) into developed
and non-developed areas (The Sprawl Site, 2002). A
majority fitting algorithm and hand-editing were used
to clean up misclassified areas. The classification was
estimated to be 70% accurate, based on an assessment
of a nearby Landsat image classified with the same
procedures (The Sprawl Site, 2002).

Several expected relationships guided the selection
of variables (Table 2). It was suspected thatdev dens,
road dens and citydev were negatively related to the
dependent variablez edge. In other words, everything

else equal, it was thought that an environment that
started out highly fragmented—in terms of develop-
ment footprint, road network or the interaction of
development footprint and municipal fragmentation—
was likely to experience decreased fragmentation of
urban development as structures filled out the devel-
opable land. This type of environment would tend
to have appropriate infrastructure and be suitable for
additional high density infill. Conversely, an environ-
ment that started out less fragmented in terms of these
variables would likely become more fragmented or
show little change if it experienced low-density devel-
opment. Several other variables, includingown dens,
city dens andfarm dens were thought to be positively
related toz edge. In other words, areas with a highly
fragmented public/private land interface, highly frag-
mented municipal boundaries or a high density of
farmland would likely experience increased fragmen-
tation of urban development. Places with these char-
acteristics were thought to be desirable for their rural
character, suitability, and availability. Conversely,
an environment that started out less fragmented in
terms of these variables would likely become less
fragmented, or show little change.

3.3. Procedures

Two models were constructed for this study: a
global regression and a GWR. Before constructing
the models, the selected variables were tested for
evidence of multicollinearity. A matrix of correlation
coefficients (Table 3) suggested thatcity dens and
citydev displayed moderate multicollinearity, defined
as a coefficient between 0.75 and 0.9. However, the
inclusion of these related variables improved the fit
and did not influence hypothesis testing or change the
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Table 3
Correlation coefficients of independent variables

dev dens own dens city dens citydev farm dens road dens

dev dens 1 −0.106 0.549 0.73 −0.01 0.688
own dens −0.106 1 −0.07 −0.071 −0.338 −0.147
city dens 0.549 −0.07 1 0.804 0.057 0.511
citydev 0.73 −0.071 0.804 1 0.025 0.575
farm dens −0.01 −0.338 0.057 0.025 1 0.094
road dens 0.688 −0.147 0.511 0.575 0.094 1

signs of the coefficients. Ultimately, multicollinearity
was not deemed a major problem in this model.

After checking the relationships between indepen-
dent variables, a global OLSs regression was run
and the residuals were tested for normality and het-
eroskedasticity. A histogram showed that the residuals
displayed kurtosis and were skewed to the right but
were close to normally distributed. A Cook–Weisberg
test revealed significant heteroskedasticity in the resid-
uals (χ2 = 7565.2, Prob. > χ2 = 0.0000). To reduce
heteroskedasticity, weighted least squares (WLS) was
employed with a robust MM estimator (Huber, 1981).
The weights were the squared residuals predicted by
an OLS regression based on the independent vari-
ables. Relative to the OLS regression, robust WLS had
a better fit and was not sensitive to heteroskedasticity.

A GWR was then performed with the same vari-
ables as the global regression. GWR generates sepa-
rate regression coefficients for every observation:

Yi = α(ui, vi) + β(ui, vi)xi + εi (4)

where(ui, vi) are the coordinates of pointi. Though
GWR is fairly straightforward, it requires the choice
of a weighting function and bandwidth. Both will in-
fluence the results of the estimation procedure used by
GWR, which is defined as follows:

α(ui, vi) = (xtw(ui, vi)x)−1xtw(ui, vi)y (5)

wherex is a matrix of independent observations,y is
a matrix of dependent observations andw(ui, vi) is
ann × n weights matrix (n is the number of observa-
tions) with zeros on the off-diagonal and weights on
the diagonal. Note that there is a separate weights ma-
trix for every observationi. In this study, the weights
were generated from the distance decay function:

wj = exp

(
− dj

h2

)
(6)

where d is the distance between observationsi and
j, and h the bandwidth beyond which the weights
are zero. The bandwidth was determined to be sig-
nificant out to 28 km by a cross-validation technique
(Cleveland, 1979). The cross-validation technique
minimizes the score:∑
i=1,n

[yi − yi(h)]2 (7)

whereyi(h) is the predicted value ofyi using band-
width h, excluding the observation for pointi. This
essentially finds the distance out to which, on average,
observations continue to provide information about
observationi.

The GWR procedure was conducted in two parts.
First, a GWR was run to calculate spatially varying
regression coefficients for each variable. Secondly,
a Monte Carlo simulation using GWR determined
which of these variables displayed significant spatial
non-stationarity. The simulation tested whether the
sampling distribution of the standard deviation of a
given coefficient could occur by chance if the data
points were randomly shuffled around the study area
1000 times (Fotheringham et al., 1998). The standard
deviation of a coefficient is an estimate of thevaria-
tion of that coefficient—in this context it helped de-
termine whether coefficients demonstrate significant
spatial variation.

4. Results

4.1. Global regression

The global regression was significant with anR2 of
0.64; approximately 64% of the change in edge density
of urban development (z edge) could be explained by
the independent variables. The coefficients confirmed
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Table 4
Globala regression model of change in edge density of development
(n = 1432)

Beta
coefficient

Standard
error

t P-value

Constant 0.0009 0.0002 5.78 0.000
dev dens −0.1076 0.0181 −5.94 0.000
own dens 0.6545 0.1160 5.64 0.000
city dens 1.3033 0.0984 13.24 0.000
citydev −138.8260 10.2774 −13.51 0.000
farm dens 0.0016 0.0004 4.34 0.000
road dens −0.5978 0.0302 −19.81 0.000

aAverage regression output for the entire study area.

the expected signs of the relationship between depen-
dent and independent variables (Table 4).

4.2. Geographically weighted regression

The Monte Carlo simulation tested each variable
for spatial non-stationarity (Table 5). It showed that
dev dens, own dens, farm dens and road dens were
significantly spatially non-stationary atP < 0.01,
while the interept andcitydev were significantly spa-
tially non-stationary atP < 0.05. The Monte Carlo
simulation also showed thatcity dens did not display
significant spatial non-stationarity.

Fig. 2. Spatially varying regression coefficients fordev dens generated by GWR, shown in standard deviations from the mean regression
coefficient.

Table 5
Results of Monte Carlo test for spatial non-stationaritya (n = 1432)

Si P-value

Constant 0 0.011∗
dev dens 0.0791 0.000∗∗
own dens 0.0544 0.000∗∗
city dens 0.0567 0.210
citydev 14.4139 0.035∗
farm dens 0.0003 0.000∗∗
road dens 0.1931 0.000∗∗

aTests if regression coefficients change over space in a way
that is unlikely to occur at random.

∗Significant atP < 0.05.
∗∗Significant atP < 0.01.

The regression coefficients of the four variables that
were significantly non-stationary atP < 0.01 were
then mapped. The first map shows that the negative re-
lationship betweendev dens andz edge was strongest
between New Castle and Glenwood Springs. East to
Aspen, the relationship weakened and approached the
mean (Fig. 2). West to Parachute, the relationship pro-
gressively weakened and reached its lowest point.

The second map shows that the positive relationship
betweenown dens and z edge was strongest around
Aspen and progressively weaker to the west until New
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Fig. 3. Spatially varying regression coefficients forown dens generated by GWR, shown in standard deviations from the mean regression
coefficient.

Castle (Fig. 3). West from New Castle, the relationship
strengthened again until the Parachute area.

The third map shows that the positive relation-
ship betweenfarm dens and z edge was strongest

Fig. 4. Spatially varying regression coefficients forfarm dens generated by GWR, shown in standard deviations from the mean regression
coefficient.

between Rifle and New Castle and weakened along
the Aspen–Glenwood Springs corridor (Fig. 4). West
from New Castle, the relationship weakened and then
approached the mean near Parachute.
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Fig. 5. Spatially varying regression coefficients forroad dens generated by GWR, shown in standard deviations from the mean regression
coefficient.

Finally, the fourth map shows that the negative rela-
tionship betweenroad dens andz edge was strongest
between Rifle and Glenwood Springs (Fig. 5). East
from Glenwood Springs, the relationship remained
close to the mean until weakening east of Aspen. West
from Rifle, the relationship weakened and reached its
lowest point near Parachute.

The mapped parameter drift shown above pro-
vides information that can potentially be used to
guide land use policy for reducing fragmentation of
urban development in two regions within the study
site.

5. Discussion

5.1. Global analysis

The global regression revealed that, on average, the
suspected relationships were true. In areas that had
dense road networks or high initial edge density of ur-
ban development,z edge decreased as infill occurred.
In areas with highly fragmented administrative bound-
aries or high density of farmland,z edge tended to in-
crease. Three specific results of the global regression

would be of interest to planners. First, the intercept
was close to zero, indicating that if all other forms
of fragmentation are zero,z edge would be expected
to be close to zero. A planner may use this impor-
tant finding as general evidence that a change in frag-
mentation of urban development does not come out of
nowhere—it is typically associated with other forms
of fragmentation.

Secondly, the global regression confirmed that
city dens was positively related toz edge, suggesting
that areas on or near fragmented municipal bound-
aries also increased in development edge density
1985–1999. One explanation for this relationship may
be that land near municipal boundaries is simply more
plentiful. An additional factor may be differential tax-
ation or other land use regulation which encourages
development near municipal boundaries. If this sec-
ond explanation is true, it suggests that when munici-
palities grow they should annex adjacent land rather
than create “flagpole annexations”, which increase
the edge density of municipal boundaries (city dens)
over a wider area. In 2001, House Bill 1001 in Col-
orado restricted flagpole annexations, so it is possible
that this relationship may change in coming years
(American Planning Association, 2002).
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Finally, the global regression confirmed thatcity-
dev, which describes the interaction ofcity dens and
dev dens, was negatively related toz edge. Areas that
were highly fragmented both in terms of municipal
boundaries and in terms of existing development were
associated with a decrease in fragmentation of urban
development. Though difficult to interpret, this result
suggests that the sprawling areas at the edge of mu-
nicipalities experienced infill during this time period.
Overall, planners may use these global results to in-
form land use policy, supplemented by the following
local analysis.

5.2. Local analysis: a comparison of two regions

While the global analysis reveals general trends
across the entire study area, it obscures the local vari-
ations these relationships. The local analysis provides
information that may help develop more effective
plans for reducing fragmentation of urban develop-
ment in two areas: the Aspen–Basalt Corridor and
the area surrounding New Castle. A land use policy
tailored to these two regions could be more effective
than a “one-size-fits-all” policy.

In the Aspen–Basalt region, several local relation-
ships showed that change inz edge was driven to a
greater extent by amenity-related fragmentation vari-
ables. For example, the relationship betweenown dens
and z edge was strongest in Aspen–Basalt (Fig. 3),
indicating that fragmentation of public–private bound-
aries was associated with an increase in the edge
density of urban development. The strength of this
relationship in Aspen–Basalt may be explained by
preferences: in wealthy Aspen, people often seek
large, private houses adjacent to public lands. Un-
fortunately, this trend threatens wildlife habitat and
potentially reduces access to public lands. To mini-
mize the conflict between public and private lands,
land use planners should consider several policies.
First, private land could be swapped for public land
to reduce accessible inholdings and simplify the pub-
lic/private interface. Secondly, counties could restrict
subdivisions in unincorporated areas in order to lessen
conflicts with public land.

The local analysis also showed that the relation-
ship betweenfarm dens and z edge was stronger in
Aspen–Basalt and up to Glenwood Springs (Fig. 4).
Though Pitkin County has actively purchased open

space and engaged in restrictive zoning practices,
low-density fragmented urban development has pro-
liferated in former agricultural areas. To address this
problem, the counties in the region could set very high
standards for subdivisions in unincorporated areas
and set financial and regulatory incentives for high
density and cluster development. Though the state
has little control on developments on parcels over
14.16 ha, there is precedent for attaching conditions
to subdivisions with parcels smaller than 14.16 ha in
unincorporated areas. For example, Spring Valley, a
2428 ha ranch near Carbondale slated for develop-
ment, changed its plan to include affordable units
and a 1619 ha conservation easement (Lutz, 2000).
Similar provisions could require less fragmentary de-
velopment and preserve open space in the remaining
agricultural lands of the area.

In the region near New Castle, local analysis re-
vealed thatz edge was driven to a greater extent
by accessibility and infrastructure-related variables.
Own dens and farm dens had weaker relationships
with z edge in this area compared with Aspen–Basalt
(Fig. 3). At the same time,road dens and dev dens
had stronger relationships withz edge (Figs. 2 and 5).
The strong negative relationships betweendev dens
andz edge indicates that areas with high initial frag-
mentation of urban development experienced infill.
Similarly, the strong negative relationship between
road dens and z edge suggested that areas with high
road density experienced infill. These relationships
indicate that fragmentation of urban development
around New Castle was less associated with open
space, such as farmland and public lands, than in
Aspen–Basalt. Instead,z edge was more strongly as-
sociated with the existing road network and initial
development pattern. This difference may have re-
sulted from local economics, preferences and zoning
practices. Compared to Aspen–Basalt, a greater per-
centage of residents in New Castle work in the service
industry or in traditional industries. The New Castle
area also has fewer second homes than Aspen–Basalt.
Thus “amenity-related” land covers would be com-
paratively less of a draw than accessible small-lot
housing. The results of the local analysis suggested
that around New Castle planners could use road place-
ment and potentially other infrastructure, where it is
publicly funded, to guide development and promote
infill.
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5.3. Limitations

The methods used in this analysis provide a po-
tentially important land use planning tool, but have
two drawbacks: the failure for the models to account
for spatial autocorrelation and the difficulty of inter-
preting spatially varying regression coefficients. First,
neither standard global regression nor standard GWR
account for spatial autocorrelation in model residuals.
A test of Moran’s I indicated that the residuals of the
global regression displayed significant positive spatial
autocorrelation out to 1.5 km. The residuals produced
by the GWR most likely displayed a similar degree
of spatial autocorrelation. In both models, this may
have resulted in false hypothesis testing (more Type II
errors) or in overstated fit. Several global regression
models have been developed that address spatial auto-
correlation (Anselin, 1988) but were not used here to
maintain comparability with GWR. Emerging meth-
ods promise to fully address spatial autocorrelation
within a GWR framework (Páez et al., 2002; Brunsdon
et al., 1998).

Secondly, interpreting spatially varying regression
coefficients is region-specific and often not straight-
forward. For example, a GWR may indicate that a
coefficient changes significantly over space, but this
change may or not be important for the ecology or
planning of a specific area. Because of these difficul-
ties, local analysis is best used to supplement other
planning data rather than as a basis for policy.

6. Conclusion

In global change research there is often a trade-off
between oversimplified coarse-scale studies and nar-
row case studies. Global and local analyses in tandem
may provide the benefits of both: global analysis re-
veals broad trends while local analysis shows the de-
viation from these trends. A perfect candidate for such
analyses is land use/land cover change, which is of-
ten driven by coarse-scale processes but amplified or
mitigated by local factors (Lambin et al., 2001). This
study is an example of such an application; the global
analysis provided a “coarse filter” that can help guide
general land use policy, while local analysis revealed
contextual relationships that help fine-tune land use
policy.

This research used global and local analysis, based
on land use planning and landscape ecology theory,
to inform policymaking. A unifying concept was frag-
mentation, a measure of form that can be connected to
the function of urban development. In this Colorado
landscape, global regression showed that fragmenta-
tion begets fragmentation; when fragmentation in ad-
ministration and land cover variables was zero, the
change in fragmentation of urban development was
expected to be zero as well. A local analysis revealed
that several of the relationships between administra-
tive and land cover fragmentation and the change in
edge density of urban development (z edge) were sig-
nificantly spatially non-stationary. By mapping how
these relationships varied locally, the analysis helped
identify ways in which two regions can attempt to re-
duce fragmentation of urban development. In the case
of Aspen–Basalt, land use planners could aim to re-
duce conflicts between public and private lands, and
between residential lands and farmland. In New Cas-
tle, planners could emphasize the use of infrastruc-
ture such as roads to help guide development. A final
caveat is that this analysis should not be a basis for
decision making on its own, but should supplement
other planning data.
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