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The wildland–urban interface (WUI) is the area where human-built structures intermingle or abut wildland
vegetation. Maps of the WUI are important for resource management, particularly related to wildfire miti-
gation, but are often based on spatially coarse data such as housing counts from census blocks. Here, three
decision tree models are used to create maps of human settlements for use in delineating the WUI. The first
model uses statistics derived from image objects; the second model uses data related to topography, amenities,
and accessibility; and the third model uses all available data. The accuracy of the models was evaluated in terms
of the percentage of actual structures that fall within the area delineated as settlements. Overall, the three
decision models performed similarly, although the third decision tree model was the best. For delineating
settlements, all three decision tree models represent an improvement over a null model and the Radeloff
et al. (2005) WUI mapping methodology and perform similar to the Wilmer and Aplet (2005) WUI mapping
methodology. The models are also more flexible than many existing models, as they allow users to trade off
accuracy and the size of the delineated settlement. The strategies described here can potentially yield improved
maps of the WUI over larger areas. Key Words: dasymetric mapping, decision trees, object-oriented,
wildland–urban interface.

La interfaz urbano-forestal (WUI) es el área en donde estructuras hechas por el hombre se entremezclan o
colindan con la vegetación forestal. Los mapas de la WUI son importantes para el manejo de los recursos,
particularmente en relación con la mitigación de los incendios forestales, pero a menudo se basan en datos
de baja resolución espacial como el recuento de viviendas por bloques censales. Aquı́, tres modelos de árboles
de decisiones se utilizan para crear mapas de asentamientos humanos para su uso en la delimitación de la
WUI. El primer modelo utiliza las estadı́sticas derivadas de objetos de imagen, el segundo modelo utiliza
datos relacionados a la topografı́a, los servicios y la accesibilidad; y el tercer modelo utiliza todos los datos
disponibles. La precisión de los modelos se evaluó en términos del porcentaje de las existentes estructuras
que califican dentro del área delimitada como asentamientos. En general, los tres modelos de decisiones
funcionaron similarmente, aunque el tercer modelo de árbol de decisión fue el mejor. Para delimitar los
asentamientos los tres modelos de árbol de decisión representan una mejora sobre un modelo nulo y a la
metodologı́a cartográfica WUI de Radeloff et al. (2005) y funcionan de manera similar a la metodologı́a
cartográfica WUI de Wilmer y Aplet (2005). Los modelos son también más flexibles que muchos de los
modelos existentes, ya que permiten a los usuarios compensar la precisión y el tamaño del asentamiento
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Mapping Settlements in the Wildland–Urban Interface 263

delimitado. Las estrategias descritas aquı́ pueden potencialmente producir mapas mejorados de la WUI en
zonas más extensas. Palabras claves: mapa dasimétrico, árboles de decisión, orientación a objetos,
interfaz urbano-forestal.

T he wildland–urban interface (WUI), the
area where housing abuts or intermin-

gles with wildland vegetation, is associated
with the vexing problems of structure loss
due to wildfire, habitat fragmentation, spread
of invasive species, and human–wildlife con-
flict. An important challenge for resource man-
agers is consistently and accurately mapping
the WUI. The definition of the WUI gen-
erally has three components: a “community”
(henceforth called settlement), wildland veg-
etation, and a distance buffer representing
the area where the WUI extends beyond the
settlement (Stewart et al. 2007). Each compo-
nent can be defined in a variety of ways de-
pending on the purpose and assumptions of
the study. The distance buffer, for example,
has been defined as up to 2.4 km (1.5 miles)
from a settlement (Healthy Forests Restora-
tion Act 2003), 0.8 km (0.5 miles) from a set-
tlement (Wilmer and Aplet 2005), or a variable
distance from a settlement depending on vege-
tation height (Platt 2010). Wildland vegetation
also has myriad definitions, most based on veg-
etation types in the National Land Cover Data
set (NLCD; Radeloff et al. 2005; Wilmer and
Aplet 2005; Hammer et al. 2007; Theobald and
Romme 2007).

This article focuses entirely on improving
the first aspect of the WUI definition: human
settlements in sparsely settled areas. Settle-
ments include structures, roads, lawns, and
other features. The areal extent of settlements
is typically derived either from distance to
structure locations or from socioeconomic
data. Structure locations can be estimated
from well location data available from the state
divisions of water resources (Aspinall 2004)
or by digitizing structure location from high-
resolution imagery. Unfortunately, structure
location data sets are often incomplete, out of
date, or prohibitively expensive to develop over
large extents. For these reasons, many maps of
settlements rely instead on socioeconomic data.
For example, settlements can be mapped using
parcel data, which are consistently collected by
county assessors, up to date, although not al-
ways publicly available in geographic informa-
tion system (GIS)-ready form. Housing counts
from census data can also be used to map settle-

ments, but in sparsely populated areas census
blocks are very large and contain a large amount
of undeveloped land. In these areas, estimates
of housing location or housing density are
often misleading—locally densely developed or
undeveloped areas will effectively be “averaged
away” within a large census block. Short
of knowing the exact location of structures,
one way to achieve improved areal estimates
of settlements is with techniques related to
dasymetric mapping.

Dasymetric mapping is the division of space
into zone boundaries that reflect the underly-
ing statistical variation of a particular variable
(Eicher and Brewer 2001). Typically, dasymet-
ric mapping disaggregates coarse-resolution
quantitative data to a finer resolution using
ancillary data sources (Mennis and Hultgren
2006). An example illustrates the dasymetric
mapping process at its simplest: Imagine a map
of housing density based on census tract hous-
ing counts. The housing density estimates are
poor because there are areas within the cen-
sus blocks (e.g., ponds and parks) where houses
cannot exist. The underlying statistical varia-
tion of housing density would be better rep-
resented if the ponds and parks had a housing
density of zero and the remaining zones had
a higher density. Dasymetric techniques typi-
cally use remote sensing data or other publicly
available data sets (e.g., road data, land cover
data, cadastral data) to derive weights or rules
for distributing the population within zones
(Cockings, Fisher, and Langford 1997; Eicher
and Brewer 2001; Chen et al. 2004; Reibel
and Bufalino 2005; Maantay, Maroko, and
Herrmann 2007). The weights or rules are
typically derived from “expert knowledge” or
assumptions about the distribution of the vari-
able of interest, although they can also be de-
rived from empirical sampling (Mennis 2003;
Mennis and Hultgren 2006).

Strategies for mapping the WUI either
employ very simple dasymetric mapping or
none at all to delineate settlements. The most
spatially extensive attempt to date to delineate
the WUI, the WUI assessment (Radeloff
et al. 2005), maps the intermix WUI (where
structures mix with wildland vegetation) and
interface WUI (where structures abut wildland
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vegetation) across the coterminous United
States using an overlay of block data from
the 2000 Census and vegetation data from
the NLCD. Using this method, settlements
are defined as the 2000 Census blocks with
a housing density of one structure per 16.2
hectares (40 acres) or more. The Radeloff et al.
study did not employ dasymetric mapping,
as it did not attempt to alter or refine census
block boundaries. In contrast, Wilmer and
Aplet (2005) and Theobald and Romme (2007)
used a similar technique but employed simple
dasymetric mapping—the removal of public
land before calculating housing density.

Techniques related to dasymetric mapping
techniques could potentially be used to delin-
eate settlements for mapping the WUI. For ex-
ample, remotely sensed imagery could be used
to find areas where structures are likely to exist
(e.g., bright or spectrally heterogeneous areas).
Alternatively, other ancillary data sources could
be used to identify areas likely to contain struc-
tures. Past research has indicated that certain
factors (e.g., distance to employment oppor-
tunities, zoning) shape population patterns in
both urban and rural areas. Research has also
indicated that amenities such as ski resorts (Du-
ane 1999), public lands (Riebsame, Gosnell,
and Theobald 1996), and space and seclusion
(Davis, Nelson, and Dueker 1994) provide a
high quality of life that might override eco-
nomic considerations of where to live (Rudzitis
and Streatfield 1993; Rudzitis 1999). In addi-
tion, scenic natural resources such as forests,
riparian areas, and lakeshores draw low-density
development and are also ecologically valuable
(Ball 1997; Myers et al. 2000; Hansen et al.
2002). Population growth in rural counties of
the northern Rockies is associated with areas of
mountainous topography, forest cover, precipi-
tation, and conserved land (Rasker and Hansen
2000). Because population is tightly coupled
with housing, it makes sense that factors re-
lated to topography, accessibility, and amenities
drive and constrain the location of settlements.
At the time of publication of this article, how-
ever, such variables had rarely if ever been used
to refine maps of settlements within counties.

In this article, three maps of settlements
were developed for the mountainous western
half of Boulder County, Colorado. The maps
were created using models calibrated with de-
cision trees, a strategy for partitioning data
into homogenous groups based on the explana-

tory variables that best distinguish the variation
of the independent variable (Breiman et al.,
1984). The maps use techniques similar to
dasymetric mapping but for simplicity present
a nominal variable (settlement vs. nonsettle-
ment) rather than a continuous variable (e.g.,
housing density). The first decision tree model
(DT-Objects) was calibrated with remotely
sensed imagery. In this model, object statistics
derived from 1-m digital ortho quarter quads
(DOQQs) were used to delineate settlements.
The second model (DT-Characteristics) was
calibrated with variables related to topography,
accessibility, and amenities at a resolution of
30 m. The third model (DT-All) was calibrated
with both remotely sensed data and data related
to topography, accessibility, and amenities. The
project has the following goals: (1) compare
the three decision tree models, a null model,
and two existing WUI models in terms of their
ability to delineate settlements; and (2) evaluate
the relationship between location of structures
and variables related to object statistics, ameni-
ties, accessibility, and topography. The deci-
sion tree approach represents a robust strategy
for developing WUI maps and produces logi-
cal rules that could potentially be extended to
other areas.

Methods

Study Area
The study area for this project is the private
land within the mountainous areas of Boul-
der County, Colorado (Figure 1). This study
area was chosen for several reasons. First, it is
data rich; in particular, digitized locations of
structures are available to calibrate and validate
the models. Second, the mountainous areas of
Boulder County are a quintessential WUI envi-
ronment containing widespread exurban devel-
opment and several small former mining towns,
including Nederland, Ward, and Jamestown.
The public land surrounding these areas is pri-
marily managed by the U.S. Department of
Agriculture (USDA) Forest Service, the Bu-
reau of Land Management (BLM), the Na-
tional Parks Service (NPS), and the Boulder
County and City Open Space and Mountain
Parks. Because virtually all structures in the
study area abut or intermingle with wildland
vegetation, this study is able to focus on the
“human settlement” component of the WUI.
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Mapping Settlements in the Wildland–Urban Interface 265

Figure 1 Study area of the mountainous area in Boulder County, Colorado. (Color figure available online.)

Decision Trees
Decision trees were used to delineate settle-
ments within the study area. Decision trees are
a set of nonparametric techniques that derive
a series of rules to classify cases into discrete
groups. A common statistical classifier, logis-
tic regression, fits a logistic curve to describe
the relationship between an independent vari-
able and the probability of class membership. In
contrast, decision trees do not assume a mono-
tonic relationship between independent and
dependent variables. They are able to model
complex nonlinear relationships and interac-
tions between independent variables. Studies
suggest that decision trees might yield bet-
ter classification accuracy than traditional sta-
tistical classifiers such as maximum likelihood
(Friedl and Brodley 1997) and result in a sub-
stantial reduction in data dimensionality (Borak
and Strahler 1999).

This study used a particular tree growing
method called classification and regression trees
(CRT; Breiman et al. 1984). CRT finds thresh-
olds of the independent variables that split data
into groups that are as “pure” (homogeneous)
as possible in terms of the dependent variable.
The splits are based on the Gini method, which
calculates impurity based on the squared prob-
abilities of the cases belonging to a dependent
variable category. The tree continues to grow
until either (1) the tree grows to a maximum of
five levels, a commonly used cutoff to maintain
model parsimony, or (2) splitting the data re-
sults in an improvement in impurity (squared
probability of an area containing a structure)

of less than 0.0001. This fully grown tree has
the smallest possible “risk” (the proportion of
misclassified cases adjusted for prior probabili-
ties and any defined misclassification costs). To
avoid overfitting, the trees are then pruned by
removing nodes (rules) to create the smallest
tree that does not increase risk by more than
one standard error. Generally, pruning results
in a vastly simplified set of classification rules,
with a minimal increase in risk.

To calibrate and validate the decision tree
models, a supervised classification strategy was
used. A data set of 13,908 points was compiled
where points represent (1) the actual location
of the 6,954 structures and (2) a random sample
of 6,954 points. The random sample represents
all private land beyond 200 m from a structure.
The actual locations of structures were digi-
tized by Boulder County Land Use in 2003,
using DOQQs and on-the-ground Global
Positioning System readings. The points
represent the estimated center of the building
footprint. Because areas with a density lower
than one structure per 16.2 ha are commonly
considered outside a community (U.S. Depart-
ment of Agriculture and U.S. Department of
the Interior 2001; Radeloff et al. 2005; Wilmer
and Aplet 2005), and thus not part of the
WUI, structures that were more than 576 m
from another structure were removed. Under
this definition, two or more adjacent 16.2-ha2

parcels with structures at the center would
count as a community, but a more dispersed
set of structures would not. The decision trees
were used to distinguish the “structure” points
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266 Volume 64, Number 2, May 2012

from the “nonstructure” points, after which
the models were applied to the landscape as
a whole to delineate settlements. A randomly
selected 80 percent of the points were included
in the calibration procedure, and the remaining
20 percent were reserved for validation.

DT-Objects
The first decision tree model was calibrated
with object statistics derived from 1-m
black-and-white 1999 U.S. Geological Survey
(USGS) DOQQs. USGS DOQQs were used
because they are the same images used to
digitize individual structures, are available free
of charge for large areas, and require less com-
putational power to process than multispectral
data of comparable resolution. Definiens
Professional 5.0 (Definiens AG, Munich,
Germany) was used to segment the image into
objects and calculate object statistics, a strategy
known as object-oriented image analysis (OBIA).
OBIA is the segmentation and classification
of homogeneous image polygons, or objects,
rather than individual pixels. Whereas tradi-
tional classification typically relies exclusively
on spectral and textural data, OBIA also utilizes
spatial relationships between objects, shape
characteristics of objects, and a wide variety of
statistics related to spectral and textural charac-
teristics of objects. Studies have suggested that
OBIA techniques are better (or at minimum
no worse) than traditional pixel classifica-
tion methods (Willhauck 2000; Civco et al.

2002; Oruc, Marangoz, and Buyuksalih 2004;
Whiteside and Ahmad 2005; Platt and Rapoza
2008). Decision tree models are likely to be
effective in sorting through and identifying the
spectral, spatial, textural, and contextual object
statistics for image classification (Laliberte,
Fredrickson, and Rango 2007).

Within the framework of Definiens Pro-
fessional 5.0, the object segmentation process
is based on a number of parameters related
to scale, color, shape, smoothness, and com-
pactness (Definiens Professional 5.0 User Guide
2006). The scale parameter is a unitless num-
ber that controls the size of image objects.
The color and shape parameters dictate the
relative influence of spectral information and
shape in creating object boundaries. The shape
parameter is defined by the smoothness and
compactness parameters. Compactness is cal-
culated as the ratio of the border length and
the square root of the number of object pix-
els. Smoothness is calculated as the ratio of the
border length and the shortest possible border
length derived from the bounding box of an
image object. Because there is no optimum set
of parameters, a standard practice is to select
parameters through trial and error. The fol-
lowing parameters were iteratively selected to
derive objects: scale, 50; color, 0.7; shape, 0.3;
smoothness, 0.5; compactness, 0.5. These pa-
rameters yielded objects that captured individ-
ual structures and surrounding infrastructure
(Figure 2).

Figure 2 Detail of image segmentation before (left) and after (right).
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Mapping Settlements in the Wildland–Urban Interface 267

Table 1 Variables derived from image objects

Spectral characteristics Shape Texture

Max pixel value Length GLCM contrast
Mean difference to scene Area including inner polygons GLCM std dev
Std dev Area GLCM mean
Minimum pixel value Area excluding inner polygons GLCM homogeneity
Mean of outer border Perimeter GLCM entropy

Number of edges GLCM correlation
Border length
Width
Shape index
Compactness (polygon)
Border index
Compactness (generic)
Roundness
Length of longest edge
Elliptic fit
Rectangular fit
Average length of edges
Asymmetry
Density
Length/width
Std dev of length of edges
Number of inner objects
Main direction

Note: Haralick’s gray-level cooccurrence matrix (GLCM) describes how different combinations of pixel values occur
within an object (Haralick, Shanmugam, and Dinstein 1973).

The segmentation procedure produced ob-
jects of variable size (M = 747 m2, SD = 683
m2). Within the objects, a total of thirty-five ob-
ject statistics were calculated, each related to a
spectral characteristic, texture, or shape of the
objects (Table 1; see Definiens Professional 5.0
User Guide 2006 for further details). The object
statistics were then assigned to the points that
fell inside (6,954 representing structures and
6,954 representing nonstructures). The cali-
bration points were then used to calibrate the
decision tree model to develop rules for dis-
tinguishing the structure points from the non-
structure points.

DT-Characteristics
The second decision tree model was calibrated
on site characteristics related to topography
(slope, topographic position, solar radiation),
amenities (percentage canopy cover, distance
from stream, distance to trailhead, distance to
public lands), and accessibility (distance to road,
distance to city; Table 2). Rasters representing
these variables were derived from commonly
available data sets from the USGS, USDA For-
est Service, and Boulder County Land Use. All

rasters have a spatial resolution of 30 m. It was
hypothesized that houses would most likely be
built in areas of low slope, close to the city, in
areas that receive lots of sunlight, in valleys, in
open canopy areas, on south-facing slopes, on
areas close to roads and trails, and near streams
(Table 2). As with the object statistics, the
site characteristics were assigned to the points
(6,954 representing structures and 6,954 rep-
resenting nonstructures). As with DT-Objects,
the calibration points were then used to cali-
brate the decision tree.

DT-All
The third decision tree model was calibrated
on the same validation points, using the data
from both DT-Objects (object statistics) and
DT-Characteristics (topography, accessibility,
and amenities).

Delineation of Settlements from Decision
Tree Rules
Decision trees are made up of a series of
rules, each associated with the proportion of
observations that belong to a particular class.
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Table 2 Topography, accessibility, and amenities variables

Name Description Source data

Slope Slope (degrees) USGS 30 m DEM
Dist2city Distance to Boulder by roads USDA Forest Service road data
Radiation Total annual solar radiation received by site USGS 30 m DEM
TPI Topographic position index∗ (Jenness 2006) USGS 30 m DEM
Cancover Canopy cover (%) LANDFIRE
Publanddist Euclidean distance to public land (m) Boulder County public lands data
Roaddist Euclidean distance to closest road (m) USDA Forest Service road data
Disttrail Distance to trailheads along roads USDA Forest Service and Boulder County Open

Space Trail data
Streamdist Euclidean distance to stream (m) USGS streams

Note: Topographic position index (TPI) is calculated as the difference between a cell and the neighborhood of the cell.
If TPI is positive, it is higher than the surrounding neighborhood (for large neighborhoods, interpreted as a ridge or hill);
if it is negative it is lower than the surrounding neighborhood (for large neighborhoods, interpreted as a valley). TPI is
strongly scale dependent; in this case a 1,000-m circular neighborhood is used. USGS = U.S. Geological Survey; USDA
= U.S. Department of Agriculture; DEM = digital elevation model.

For example, a single decision tree rule might
state that of points that are more than 90 m
from roads and more than 15 m from public
land, 84 percent represent nonstructures and
16 percent represent structures. In this exam-
ple, all cells more than 90 m from roads and
more than 15 m from public land would be
classified as nonstructures because the 84 per-
cent proportion is above the 50 percent cut
point (the proportions are used as a proxy
for probability). The 50 percent cut point is
arbitrary and in fact does not represent the
actual proportion of cells containing a struc-
ture; whereas 50 percent of the calibration
points represent structures, only a small per-
centage of cells in the landscape actually contain
structures. By design, the delineated settlement
was overpredicted to minimize errors of
omission.

All maps were produced using 30-m grid
cells. The input data for DT-Characteristics
is already represented in 30-m grid cells, but
the objects used as input to DT-Objects are of
variable size and based on 1-m orthophotos. To
make the maps comparable, the image objects
were converted to a 30-m grid, using the cen-
ter point rule in cases where multiple objects
intersect a grid cell.

Model Comparison and Evaluation
After delineating the settlements, the models
were compared using three techniques: (1) a vi-
sual comparison, (2) classification matrices, and
(3) a graph of the percentage of structures that

fall within settlements (high is better) versus
the percentage of study area classified as set-
tlements (low is better). This graph allows the
models to be compared at every possible cut
point, not just 50 percent. For reference, the
models are compared to a null model, where
the percentage of land in settlements is equal to
the correctly classified structures. The models
are also compared to the settlements defined by
two existing WUI mapping strategies: Radeloff
et al. (2005) and Wilmer and Aplet (2005).

Results

DT-Objects
Variables with the most explanatory power ap-
pear earlier in the tree and more frequently
(Lagacherie and Holmes 1997). The most im-
portant variable for the DT-Objects tree is
maxpixel (Figure 3): A point has a higher prob-
ability of representing a structure when the
maxpixel value is high. Farther down the tree,
variables related to object texture appear fre-
quently. When gray-level cooccurence matrix
(GLCM) contrast, GLCM stddev, and GLCM
entropy are high, this indicates that the pixel
values within the object are heterogeneous. It
makes intuitive sense that structure points tend
to be located in objects that are heterogeneous
with some bright pixels, as structures have a va-
riety of building materials, some of which (e.g.,
cement, bare ground) are highly reflective and
some of which (e.g., asphalt, most shingles) are
dark. Variables related to shape (e.g., length)
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Mapping Settlements in the Wildland–Urban Interface 269

Figure 3 Decision tree for DT-Objects. Each node (shown as a rectangle) includes a variable and
threshold value. Values greater than the threshold are split to the right, whereas values less than or equal
to the threshold are split to the left. Terminal nodes (shown as ovals) include the probability that a point
represents a structure.

are also important but appear less frequently
than texture. For example, points in objects
with high maxpixel value that also have low
length (e.g., are compact) are likely to repre-
sent structures.

DT-Characteristics
The second decision tree model, DT-
Characteristics, shows that only a few variables
are important for distinguishing the classes. At
the top of the tree, roaddist is the most impor-
tant variable (Figure 4). Farther down the tree,
slope and publanddist are also important.

The rules can be interpreted as follows:
Structures tend to be within 92 m of the road
network. Structures also tend to be located in
areas directly adjacent to public land. Indeed,
many of the few structures located far from
roads are within 15 m of public land. Struc-
tures tend to be located on land with less than
16 degrees slope in places farther than 36 m
from a road.

DT-All
The third decision tree model is calibrated with
both of the aforementioned data sets. As in

DT-Objects, maxpixel appears at the top of the
tree (Figure 5). Roaddist appears on the second
level. On the third level, object statistics such
as GLCM contrast, length, and perimeter are
important. On the lowest levels, topographic
position index (TPI), publanddist, and GLCM
stddev help distinguish structures from non-
structures.

Model Comparison and Validation
To compare the models, maps were developed
using the 50 percent cut point and visually com-
pared (only a subset shown here; Figure 6).
The map confirms that the models are success-
ful in identifying the areas that contain struc-
tures but also illustrate some error (e.g., ac-
tual structures located outside of the delineated
settlement).

The models were then compared and vali-
dated using classification matrices constructed
with the 20 percent of the observations re-
moved from the calibration procedure. Again,
the 50 percent cut point was used. For DT-
Objects, it was found that 71.9 percent of the
points representing structures were correctly
identified and that 71.1 percent of the points
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Figure 4 Decision tree for DT-
Characteristics. Each node (shown as
a rectangle) includes a variable and thresh-
old value. Values greater than the threshold
are split to the right, whereas values less
than or equal to the threshold are split
to the left. Terminal nodes (shown as
ovals) include the probability that a point
represents a structure.

representing not containing structures were
correctly identified (Table 3).

For the DT-Characteristics model, it was
found that 80.6 percent of the points repre-
senting structures were correctly identified and
that 60.4 percent of the points not representing
structures were correctly identified (Table 4).
Compared to DT-Object, DT-Characteristics

did a better job identifying points that represent
structures but also predicted that many points
are likely to represent structures when in fact
they do not.

The DT-All model was found to be the
best of the three but only marginally (Ta-
ble 5). It was found that 80.8 percent of the
points representing structures were correctly

Figure 5 Decision tree for DT-All. Each node (shown as a rectangle) includes a variable and threshold
value. Values greater than the threshold are split to the right, whereas values less than or equal to
the threshold are split to the left. Terminal nodes (shown as ovals) include the probability that a point
represents a structure.
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Mapping Settlements in the Wildland–Urban Interface 271

Figure 6 Detail of settlement map. DT = decision tree. (Color figure available online.)

identified and that 70 percent of the points
not representing structures were correctly
identified.

The three models were then compared and
validated using a variation on a receiver operat-
ing characteristic (ROC) curve (Figure 7). Like
a traditional ROC curve, the y axis shows the
accuracy—also called true positive or 1-error of
omission. In this study, it can be interpreted as

the percentage of nonremote structure points
(i.e., within 576 m of another point) that fall
within cells classified as settlements. The x axis
shows the percentage of all cells classified as
settlements. This can be interpreted similarly
to the false positive rate or 1-error of commission,
as only a small (but unknown) percentage of the
land area includes structures and surrounding
infrastructure.
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Figure 7 Receiver operating characteristic (ROC) curve showing the trade-off between “true positive”
rate (i.e., the percentage of nonremote structure points within settlements) and the percentage of the
study area classified as settlements. DT = decision tree. (Color figure available online.)

The greater the area under the curve in Fig-
ure 7, the better the model. For reference, the
curve of a hypothetical model with no pre-
dictive power (null model) would fall along
the diagonal line (Figure 7); the percentage of
cells classified as settlements is equal to the
percentage of structures that fall within the
settlements area. Also, for reference, two ex-

Table 3 Classification matrix for DT-Objects

Predicted

Observed
Not a

structure Structure
%

correct

Not a structure 948 385 71.1
Structure 385 985 71.9
Overall percentage 49.3% 50.7% 71.%

isting WUI mapping strategies (Radeloff et al.
2005; Wilmer and Aplet 2005) have been placed
on the graph as single points.

The curves of the three models are visually
similar to each other and lie above the diag-
onal line (null model). Starting in the upper
right-hand corner of Figure 7, it is clear that

Table 4 Classification matrix for
DT-Characteristics

Predicted

Observed
Not a

structure Structure
%

correct

Not a structure 839 551 60.4
Structure 196 1,206 86.0
Overall percentage 37.1% 62.9% 73.2

D
ow

nl
oa

de
d 

by
 [

A
A

G
 ]

 a
t 1

2:
35

 2
7 

A
pr

il 
20

12
 



Mapping Settlements in the Wildland–Urban Interface 273

Table 5 Classification matrix for DT-All

Predicted

Observed
Not a

structure Structure
%

correct

Not a structure 989 423 70.0
Structure 273 1,146 80.8
Overall percentage 44.6% 55.4% 75.4

if 100 percent of the study area is a commu-
nity, then 100 percent of the structures will
be within a the community. By applying any
of the three decision tree models, settlements
can be shrunk to 75 percent of the study area
while retaining ∼95 percent of the structures.
The Wilmer and Aplet (2005) model performs
similarly. A null model with no predic-
tive power, by contrast, would retain only
75 percent of the structures. Continuing down
the curve, DT-All and DT-Characteristics al-
low us to shrink the settlements to 50 percent
of the study area while retaining ∼90 percent
of the structures, whereas DT-Objects retains
only ∼82 percent of the structures. The Rade-
loff et al. (2005) model retains 70 percent of
the structures at 50 percent of the study area
and so is less accurate by this standard than
the three decision tree models. At the bot-
tom of the curve, DT-All allows us to shrink
the settlements to 20 percent of the study area
while retaining ∼75 percent of the structures,
whereas DT-Objects and DT-Characteristics
retain only ∼62 percent of the structures. The
results show that overall DT-All is the most ac-
curate model, although the advantage depends
on the particular cut point.

Discussion and Conclusions

In western Boulder County, Colorado, the lo-
cation of structures is related to characteris-
tics such as distance to road, distance to public
land, and slope, as well as to spectral charac-
teristics (e.g., maxpixel), texture (e.g., GLCM
contrast), and shape (e.g., length). These in-
dependent variables were successfully used to
construct maps of settlements in the WUI, sim-
ilar in nature to dasymetric maps. The “best” of
the three decision tree models depends on the
specific application. For small refinements of
the estimate of structure location, the perfor-
mance of the three decision tree models is simi-

lar; all three models can reduce the settlements
to 75 percent of the study area while retain-
ing ∼95 percent of the structures. In this case,
the DT-Characteristics model might be “best”
because acquiring and processing the data for
this model is straightforward. For larger refine-
ments, however, the DT-All model performs
better than the others (higher accuracy at a
given size of delineated settlements). Unfor-
tunately, calculating object-level statistics re-
quires time, computational power, and expen-
sive software.

The modeling strategies described in this
study represent a potential step forward in con-
sistently mapping the WUI. In the study area,
the strategies more accurately delineate settle-
ments than the Radeloff et al. (2005) method,
although they are not as conceptually simple
or as easily extended to large areas. The strate-
gies are more flexible (if not better) than the
Wilmer and Aplet (2005) method because they
allow users to trade off accuracy and size of the
delineated settlement.

To apply the decision tree models to larger
areas, it would be important to first evaluate
the relationships and rules to see if they ex-
tend to other places. Many of the relationships
and rules might indeed apply broadly to other
places, especially in the Rocky Mountain Re-
gion. It is expected that across the country, most
settlements would be spectrally heterogeneous
with some highly reflective elements. Further-
more, it is expected that settlements would be
close to roads and on relatively low slopes. If
the relationships hold, the decision tree rules
could be used in conjunction with census block
housing counts to create improved maps of
housing density, which could be overlaid on
layers of wildland vegetation to create a full
WUI map. Some regional differences will
doubtless emerge, however, that could com-
plicate general applicability. For example, the
study area is amenity-rich and has exten-
sive public land that constrains development.
The relationship between public land and lo-
cation of settlements could be very differ-
ent in a nonmountainous environment, in an
area with less extensive public lands, or in
an area with different zoning practices from
the study area. Exploring the regional differ-
ences would be a rich area of study. Should
major regional differences in these relation-
ships exist, it would be important to extend
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the method presented here to allow “rules” to
vary spatially. Even if large-scale applicability
should ultimately prove difficult, the process
of creating the decision tree models is itself
valuable, as it helps reveal the characteristics
(topographic, accessibility related, amenity re-
lated, and spectral) that are associated with set-
tlements. �
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